

Zerstörungsfreie Untersuchung von Brennstoffzellen und Batterien mit bildgebenden Röntgen- und Neutronen-Verfahren

Ingo Manke Helmholtz-Zentrum Berlin für Materialien und Energie

ÜBERSICHT

- Prinzip der Tomographie
- Eigenschaften von Neutronen und (Synchrotron-)Röntgenstrahlung
- Anwendungsbeispiele
 - Brennstoffzellen
 - Batterien

J. Banhart, A. Borbély, M. Dzieciol, I. Manke, N. Kardjilov, A. R. Kaysser-Pyzalla, et al. International Journal of Materials Research 2010, 9, 1069-1079 (2010)

J. Banhart, A. Borbély, M. Dzieciol, I. Manke, N. Kardjilov, A. R. Kaysser-Pyzalla, et al. International Journal of Materials Research 2010, 9, 1069-1079 (2010)

J. Banhart, A. Borbély, M. Dzieciol, I. Manke, N. Kardjilov, A. R. Kaysser-Pyzalla, et al. International Journal of Materials Research 2010, 9, 1069-1079 (2010)

Wasserstoffverteilung im Stahl

A. Griesche, E. Dabah, Th. Kannengießer, N. Kardjilov, A. Hilger, I. Manke *3D-imaging of hydrogen blister in steel with neutron tomography* **Acta Materialia**, 78, p. 14-22 (2014)

Speichermedium LaNi_{4.8}Al_{0.2}

Polymer-Elektrolyt-Membran Brennstoffzelle (PEM-BZ)

Wasser-Management

Polymer-Elektrolyt-Membran Brennstoffzelle (PEM-BZ)

Neutronen-Radiographie

Quantifizierungsgenauigkeit für Wasser

J.R. Bunn, D. Penumadu et al.

Detection of water with high sensitivity to study PEM fuel cell membranes using cold neutrons at high spatial resolution **Applied Physics Letters**, to be submitted (2013)

Synchrotron-Röntgen-Tomographie

BESSY

- Hohe Strahlintensitäten
- Monochromatische Strahlung
- Hohe Kohärenz

- Hohe Abbildungsgenauigkeit/Bildqualität
- Exzellente Quantifizierungsgenauigkeit
- Elementselektivität

Bundesanstalt für Materialforschung und -prüfung

Synchrotron-Röntgen-Radiographie und -Tomographie

Synchrotron-Röntgen-Radiographie

neutron radiography

In-situ synchrotron radiography

I. Manke et al., **APL** 90, 174105 (2007), Ch. Hartnig et al., **APL** 92, 134106 (2008) Ch. Hartnig et al., **J. Power Sources** 188 (2009), I. Manke et al., **APL** 92, 244101 (2008)

Synchrotron-Röntgen-Tomographie

Quantifizierung der Wassermengen mittels Differenz-Tomographie

Voll geladen

Zerstörungsfreie Prüfung

Neutronen-Tomographie

LiJ-Batterie

LiCoO₂-Batterie

Bundesanstalt für Materialforschung und -prüfung

B. Müller, A. Kupsch,

A. Lange, M. Hentschel

N. Kardjilov, A. Hilger, F. Wieder, Ch. Tötzke, T. Arlt, H. Markötter R. Grothausmann, J. Banhart

W. Lehnert, W. Maier, D. Froning

- V. Schmidt, R. Thiemann,
- G. Gaiselmann

- J. Scholta, M. Messerschmidt,
- M. Klages, J. Haußmann,
- R. Kuhn, Ph. Krüger,
- F. Häussler, S. Kleinau

Vielen Dank für Ihre Aufmerksamkeit!

