

Unter Spannung – Energie für die Zukunft: Charakterisierung von Batterien für stationäre Energiespeicher

Dr. Alexander Hirnet VARTA Storage GmbH

VDI-TUM Expertenforum – Zerstörungsfreie Prüfung für die Mobilität und Energie der Zukunft

VARTA Heute und Morgen

Projekt EEBatt

EEBatt – Dezentrale Stationäre Batteriespeicher zur effizienten Nutzung Erneuerbarer Energien und Unterstützung der Netzstabilität

61 Arbeitspakete

Projektkoordination: Prof. Dr. Hubert Gasteiger & Prof. Dr. Andreas Jossen

Projektleitung: Marcus Müller M.Sc.

Anforderungen an ein stationäres Batteriespeichersystem

-Lange Lebensdauer -Zyklenlebensdauer: >5000 Zyklen -Kalendarische Lebensdauer: >20 Jahre -Hohe Sicherheit -Hoher Zyklenwirkungsgrad -Energiedichte -Leistungsdichte -Wirtschaftlichkeit

Beispiel: Zyklenalterung

Lade- / Entladezyklen

Warum ist Zelle 2 so viel schlechter?

Lithium-Ionen-Batterie Anode // Electrolyt // Separator // Kathode

Graphite • Li₄Ti₅O₁₂ • Si/C

- LiFePO₄ (LFP)
 LiMn₂O₄ (LMO)
 LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂ (NMC)
 LiNi_{0,85}Co_{0,1}Al_{0,05}O₂ (NCA)

Lithium-Ionen-Batterie Anode // Electrolyt // Separator // Kathode

Wie kann man das Innenleben einer Lithium-Ionen-Zelle während des Betriebs beobachten?

Graphite • Li₄Ti₅O₁₂ • Si/C

- LiFePO₄ (LFP) LiMn₂O₄ (LMO) LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂
- -iNi_{0,85}Co_{0,1}Al_{0,05}O₂

Teilprojekt 2 – Zelloptimierung: Neutronenquelle

Längenskala

~0.1nm

Diffraktion

Verfolgen der chemischen Vorgänge in der Zelle anhand der Intensität prominenter Reflexe der Li/C Phasen

Kleinwinkelstreuung

Untersuchungen von Strukturen im Nanometerbereich, um Aussagen über mittlere Teilchengrößen und deren Verteilung zu erhalten.

Radiographie/Tomographie

Blick ins Innere der Zelle, um Inhomogenitäten und Partikelverteilungen zu erkennen (> 50 µm)

>50µn

Diffraktion

Experimente:

- Vorbereitungstests zur Bestimmung der notwendigen Probenmenge, Wellenlänge und Messzeit
- Messung der Batteriematerialkombinationen zur Abschätzung der Sensivität der Einzelkomponenten
- In situ Messung während des Lade- / Entladevorgangs

Neutronen Diffraction an einer Rundzelle

- 18650 NMC/Graphit Rundzelle
- Volumenaufgelöste Diffraktion (5 mm Blende + Radialkollimator)
- Meßzeit f
 ür komplettes Diffraktogramm 4 h
- Phase bei ca. 40% state of charge (SOC):
 AI, Cu (Elektroden)
 LiC₁₂ and NMC

In situ Neutronen Diffraktion: Laden einer Ni-Mn-Co / C Zelle

Small-angle neutron scattering (SANS)

Messung mit SANS und Modellierung der Komponenten / Alterungseffekte :

Set up SANS-1:

Ex-situ set up für Zellen mit Probentauscher

Technische Universität München

Small-angle neutron scattering (SANS)

Neutronen Tomographie Alkaline Batterie High Energy, Mignon, (AA/LR6)

0.8 V

R. Gilles, M. Schulz TU München 13

Vielen Dank