

Eigenspannungen additiv gefertigter IN718-Proben

Additive Fertigung – Neue Herausforderungen für die zerstörungsfreie Prüfung

Fabian Bayerlein TU München

Agenda

4 Zusammenfassung und Ausblick

Agenda

1	Motivation
2	Vorgehensweise
3	Ergebnisse
4	Zusammenfassung und Ausblick

Motivation

Additive Fertigung und Eigenspannungen

- Was sind Eigenspannungen?
 - Spannungen im Material ohne äußere Last
 - Entstehung durch Inhomogene Dehnungsfelder
- Warum sind Eigenspannungen ein Problem?
 - Verzug bei nachfolgenden Prozessen
 - Frühzeitiges Versagen im Lastfall
- Was kann man dagegen tun?
 - Kugelstrahlen, Walzen (Oberfläche)
 - Spannungsarmglühen (Volumen)
- Wie kann man Eigenspannungen messen?
 - Zerstörend
 - Zerstörungsfrei
 → Herausforderung Eindringtiefe

¹REPPER 2010

1	Motivation
2	Vorgehensweise
3	Ergebnisse
4	Zusammenfassung und Ausblick

Studie

Zweck

- Eigenspannungsverteilung im Volumen bei LBM¹-Bauteil
- Validierungsdaten für Struktursimulation
- Probengeometrie
 - Quaderförmiger Testkörper (40x10x40 mm³)
 - Einfache Geometrie: Automatisierbarkeit der Messung \uparrow
 - Geringe Dicke: Neutronenabschwächung \downarrow
- Fertigung der Probe
 - Material: IN718 (Nickelbasislegierung), Einsatztemperatur bis 650 °C
 - Laserstrahlschmelzen mit 20 µm Schichthöhe und Standardparametern
- Untersuchung
 - Neutronendiffraktometrie (@STRESS-SPEC (MLZ²))
 - Röntgendiffraktometrie (@MTU Aero Engines AG)
 - Bohrlochuntersuchungen(@MTU Aero Engines AG)

Grundlagen der Neutronendiffraktometrie

- Eigenspannungen: Spannungen im Material in der Abwesenheit von externen Kräften
- Unterschiedliche Skalen von Eigenspannungen
 - 1. Art: Ausgleich über die gesamte Struktur
 - 2. Art: Ausgleich innerhalb eines Korns
 - 3. Art: Spannungen innerhalb eines Korns

α

х

Grundlagen der Neutronendiffraktometrie

- Eigenspannungen: Spannungen im Material in der Abwesenheit von externen Kräften
- Unterschiedliche Skalen von Eigenspannungen
 - 1. Art: Ausgleich über die gesamte Struktur
 - 2. Art: Ausgleich innerhalb eines Korns
 - 3. Art: Spannungen innerhalb eines Korns
- Messung
 - Grundlage: Bragg-Streuung
 - Konstruktive Interferenz unter bestimmten Winkeln
 - Gitterdehnung → Verschiebung der Interferenzmaxima
- Probenorientierung
 - Einkristall Abstrahlung in eine Richtung
 - Polykristall Abstrahlung in alle Richtungen:
 - -> Debye-Scherrer-Kegel

ТШ

Das Instrument STRESS-SPEC

Ansicht von oben

Messvolumen von oben

ПП

Auswertung

- Gitterabstand → Dehnung
 - Hohe Bedeutung des d₀-Parameters
 - Test verschiedener Referenzproben (Zylinder, Pulver) in verschiedenen Zuständen (wie gebaut, spannungsarmgeglüht)
- Dehnung → Spannung
 - Querdehnungseffekte: Dehnung in min. 3
 Richtungen (jeweils senkrecht zueinander)
 notwendig
 - Berechnung mit Hookeschem Gesetz:

$$\sigma_{ij} = \frac{E}{1+\nu} \cdot \left[\varepsilon_{ij} + \frac{\nu}{1-2\nu} (\varepsilon_{11} + \varepsilon_{22} + \varepsilon_{33}) \right]$$

 Voller Spannungstensor: min. 6 Messungen in unabhängige Richtungen notwendig

© *iwb* – Institut für Werkzeugmaschinen und Betriebswissenschaften

senschaften Bildquelle(n): REPPER 2010, S. 52

Vorgehensweise

Versuchsdurchführung

- Wahl des Gitterabstandes
 - IN 718: γ- Matrix und Ausscheidungshärtung durch
 - γ' und γ'' Phase
 - Auswahl für Messung: γ {311}
 - Wenig texturanfällig
 - Wenig Einfluss anderer Reflexe
- Messung
 - Optische Positionierung + Eintauchscans
 → Fehlerquelle unvollständige Immersion
 - Messzeit pro Messpunkt 1 30 Minuten
 → Signal-Rausch-Verhältnis
 - Automatisierung der Probenpositionierung in 4 Achsen
 - \rightarrow Betreuungsaufwand

Zusammensetzung IN178								
Ni	Fe	Cr	Nb	Mo	Ti	Al	С	В
52	19	19	5.3	3.1	0.95	0.55	0.03	0.005

1	Motivation
2	Vorgehensweise
3	Ergebnisse
4	Zusammenfassung und Ausblick

Ergebnisse

Spannungsfreie Referenz

- Messvolumen
 - Einfluss geringer als Probenart
 - Ergebnisse mit verschiedenen Messvolumen nur begrenzt vergleichbar
- Art der Referenzprobe
 - Keine Probe eignet sich als universelle Referenz \rightarrow fehlende Einhaltung mech. Randbedingungen
 - Verwendung kleiner Quader an Messstellen aus äquivalenter Probe¹

Einfluss der Wahl der Referenzprobe auf einen beispielhaften Spannungswert

© *iwb* – Institut für Werkzeugmaschinen und Betriebswissenschaften ¹BAYERLEIN 2018

Ergebnisse

Neutronendiffraktometrie - Normalspannungen

- Spannungsbild
 - Symmetrisch
 - Hohe Zugspannungen und Spannungsgradienten in Randbereichen
 - Geringe Spannung zur freien Oberfläche
 - Druckspannungen in den mittleren Bereichen des Bauteils
- Übereinstimmung Simulation <> Experiment
 - Gute qualitative Übereinstimmung
 - Druckspannungen werden überschätzt

Ergebnisse

Neutronendiffraktometrie - Longitudinalspannungen

- Spannungsbild
 - Symmetrisch
 - Moderates Spannungsniveau im gesamten Bauteil
 - Geringe Spannung zur freien Oberfläche
- Übereinstimmung Simulation <> Experiment
 - Gute qualitative Übereinstimmung

Results

Transversalspannungen in der Ebene

- Stresses
 - Symmetrisch
 - Hohe Zugspannungen an der Oberseite
 - Moderate Spannungen an den Seitenflächen
 - Hoher Spannungsgradient im oberen Bereich
- Übereinstimmung Simulation <> Experiment
 - Gute qualitative Übereinstimmung
 - Unterschätzung der Zugspannungen an der Oberseite
 - Unterschätzung der Zugspannungen an der Seitenfläche

Neutronendiffraktometrie- (Raute), Röntgendiffraktometrie- (Rechteck) und Bohrloch- (Kreis) Ergebnisse im Vergleich zur Simulation (Konturplot) Agenda

Zusammenfassung

ПП

Schlussfolgerungen

- Hohes Eigenspannungsniveau in additiv gefertigten Bauteilen
 - → Beherrschung notwendig
- Komplexe Geometrien & geringe Wandstärken
 → Herausforderungen für die Eigenspannungsmessung
- Inhomogene Abkühlbedingungen im Bauteil
 → Herausforderung für die spannungsfreie Referenzprobe
- Neuartige Werkstoffe

→ Neue Herausforderungen bei der Identifikation geeigneter Streuebenen

- Vorhersage des Spannungszustandes f
 ür neuartige Geometrien ben
 ötigt simulative Vorhersage
- Ausführliche Ergebnisse in Veröffentlichung¹

Ausblick

Weitere Forschungsaktivitäten am iwb

ТШ

ТШ

M. Sc. Fabian Bayerlein

Wissenschaftlicher Mitarbeiter

Technische Universität München Institut für Werkzeugmaschinen und Betriebswissenschaften

Boltzmannstraße 15 85748 Garching

Tel. +49.89.289.15532 Fax +49.89.289.15555

fabian.bayerlein@iwb.mw.tum.de www.iwb.tum.de

Quellen

BAYERLEIN 2016

BAYERLEIN, F., et al. Validation of modeling assumptions for the buildup simulation of laser beam melting on the basis of the residual stress distribution. In: *Proc. ECOMAS Congress*. Crete Island: Greece, 2016.

BAYERLEIN 2018

BAYERLEIN, F., et al. Transient Development of Residual Stresses in Laser Beam Melting – A Neutron Diffraction Study. In: *Additive Manufacturing, unpublished.*

HUTCHINGS 2005 Hutchings, M. T.: Introduction to the characterization of residual stress by neutron diffraction. Boca Raton, FL [u.a.]: Taylor & Francis. 2005. ISBN: 978-0-415-31000-0.

LODINI 2003

Lodini, A.: Calculation of residual stress from measured strain. In: Analysis of Residual Stress by Diffraction using Neutron and Synchrotron Radiation. CRC Press. 2003, S. 47–60. ISBN: 978-0-415-30397-2. DOI: 10.1201/9780203608999.pt2.

REPPER 2010

Repper, J.: Einfluss mikroskopischer Eigenspannungen auf die makroskopische Eigenspannungsanalyse mittels Neutronenbeugung. Dissertation. M⁻⁻ unchen: Technische Universit⁻at M⁻⁻ unchen. 2010.