#### Unidirectional light propagation in multiferroics and multi-antiferroics

István Kézsmárki

Department of Physics, Budapest University of Technology and Economics Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg





Colleagues: Prof. S. Bordács, Dr. D. Szaller, Dr. V. Kocsis, D. Farkas, J. Vit

Collaborators: Prof. Y. Tokura, RIKEN Center for Emergent Matter Science, Japan

Prof. S-W. Cheong, Rutgers Universty, USA

Prof. K. Ohgushi, Tohoku University, Japan

Dr. T. Rõõm, Dr. U. Nagel, NICPB, Estonia

Prof. J. Hemberger, Prof. M. Grüninger, University of Cologne, Germany

Dr. K. Penc, Dr. J. Romhányi, Wigner Res. Inst. for Physics, Hungary

Dr. R. Fishman, Oak Ridge National Lab, USA

### Quadrochroism



### Outline

Static & optical magnetoelectric effects in multiferroics

$$\begin{bmatrix} D \\ B \end{bmatrix} = \begin{bmatrix} \hat{\varepsilon} & \hat{\chi}^{em} \\ \hat{\chi}^{me} & \hat{\mu} \end{bmatrix} \begin{bmatrix} E \\ H \end{bmatrix}$$

Quadrochroism & one-way trasparency via the optical magnetoelectric effect



Target compounds: Ba<sub>2</sub>CoGe<sub>2</sub>O<sub>7</sub>, LiCoPO<sub>4</sub>



### Multiferroics & magnetoelectric effect



"Materials should exist, which can be polarized by a magnetic field and magnetized via an electric field." P. Curie, Journal de Physique 3, 393 (1894)

#### Multiferroics & magnetoelectric effect



L.D. Barron, Molecular light scattering and optical activity (Cambridge, 2004)

#### Outline

Static & optical magnetoelectric effects in multiferroics

$$\begin{bmatrix} D \\ B \end{bmatrix} = \begin{bmatrix} \hat{\varepsilon} & \hat{\chi}^{em} \\ \hat{\chi}^{me} & \hat{\mu} \end{bmatrix} \begin{bmatrix} E \\ H \end{bmatrix}$$

> Quadrochroism & one-way trasparency via the optical magnetoelectric effect



Target compounds: Ba<sub>2</sub>CoGe<sub>2</sub>O<sub>7</sub>, LiCoPO<sub>4</sub>



### Optical magnetoelectric effect: Four-coloured optics



- different refractive indices for ±k propagation and two polarizations, termed as quadrochroism
- directional (±**k**) optical anisotropy is generally weak,  $\Delta N/N \sim 10^{-2}$ -10<sup>-6</sup> Rikken, Nature (1997)
- BUT can be strong in multiferroics!

### Optical magnetoelectric effect: Four-coloured optics



- different refractive indices for  $\pm \mathbf{k}$  propagation and two polarizations, termed as quadrochroism
- directional (±**k**) optical anisotropy is generally weak,  $\Delta N/N \sim 10^{-2}$ -10<sup>-6</sup> Rikken, Nature (1997)
- BUT can be strong in multiferroics!

#### Optical magnetoelectric effect: One-way transparency

Condition for one-way transparency:

$$\frac{\left\langle n \right| \mathbf{M}_{\mathbf{j}} \left| 0 \right\rangle}{\left\langle n \right| \mathbf{P}_{\mathbf{j}} \left| 0 \right\rangle} \right| \triangleq \left| \gamma \right| = \frac{1}{\sqrt{\epsilon_i^{\infty}}} \quad \text{[CGS]}$$

Kézsmárki, NatCommun (2014)



Kézsmárki, PRL (2011) Bordács, NatPhys (2012)  $Eu_{05}Y_{05}MnO_3$ Takahashi, NatPhys (2012) Gd<sub>0.5</sub>Tb<sub>0.5</sub>MnO<sub>3</sub> Takahashi, PRL (2013) Sr<sub>2</sub>CoSi<sub>2</sub>O<sub>7</sub> & Ca<sub>2</sub>CoSi<sub>2</sub>O<sub>7</sub> Szaller, PRB (2014) Kézsmárki, NatCommun (2014)  $CuFe_{1-x}Ga_xO_2$ Kibayashi, NatCommun (2014) SmFe<sub>3</sub>(BO<sub>3</sub>)<sub>4</sub> Pimenov, PRB (2015)  $CuB_2O_4$ Arima, PRL (2015) CaBaCo<sub>4</sub>O<sub>7</sub> Bordács, PRB (2015) BiFeO<sub>3</sub> Kézsmárki, PRL (2015)  $SmFe_3(BO_3)_4$ Kuzmenko, PRL (2018)

#### Optical magnetoelectric effect: One-way transparency



Kézsmárki, PRL (2011)

#### Optical magnetoelectric effect: One-way transparency



Bordács, NatPhys (2012)

#### Outline

Static & optical magnetoelectric effects in multiferroics

$$\begin{bmatrix} D \\ B \end{bmatrix} = \begin{bmatrix} \hat{\varepsilon} & \hat{\chi}^{em} \\ \hat{\chi}^{me} & \hat{\mu} \end{bmatrix} \begin{bmatrix} E \\ H \end{bmatrix}$$

Quadrochroism & one-way trasparency via the optical magnetoelectric effect





Target compounds: Ba<sub>2</sub>CoGe<sub>2</sub>O<sub>7</sub>, LiCoPO<sub>4</sub>





- Tetragonal noncentrosymmetric crystal structure Hutanu, PRB (2011)
- Magetic Co<sup>2+</sup> ions with S=3/2 in tetrahedral oxygen cages
- Easy-plane Néel antiferromagnet Hutanu, PRB (2012)





Kézsmárki, PRL (2011)



Bordács, NatPhys (2012)



Ba<sub>2</sub>CoGe<sub>2</sub>O<sub>7</sub>



- Four different values of the refractive index for a given axis of propagation: forward and backward (±k) propagation and two orthogonal polarizations,
- Magnons with nearly optimal magnetoelectric ratio,  $|\gamma| = \frac{c}{\sqrt{\epsilon_i^{\infty}}}$ ,

• Connection with dc ME effect: 
$$\chi_{ij}^{me}(0) = \frac{c}{2\pi} \cdot \int_0^\infty \frac{\Delta \alpha(\omega)}{\omega^2} d\omega \quad \Leftarrow \quad \Re \chi(\omega) = \frac{1}{\pi} \mathcal{P} \int_{-\infty}^\infty \frac{\Im \chi(\omega')}{\omega' - \omega} d\omega'$$

Kézsmárki, NatCommun (2014)



- b- mode is the Goldstone mode ( $\omega$ =0)  $\leftrightarrow$  dc magnetoelectric effect
- b+ would be the other Goldstone mode in the lack of magnetic anisotropy

Penc, PRL (2012)

#### Outline

Static & optical magnetoelectric effects in multiferroics

$$\begin{bmatrix} D \\ B \end{bmatrix} = \begin{bmatrix} \hat{\varepsilon} & \hat{\chi}^{em} \\ \hat{\chi}^{me} & \hat{\mu} \end{bmatrix} \begin{bmatrix} E \\ H \end{bmatrix}$$

Quadrochroism & one-way trasparency via the optical magnetoelectric effect





Target compounds: Ba<sub>2</sub>CoGe<sub>2</sub>O<sub>7</sub>, LiCoPO<sub>4</sub>





- orthorhombic Pmna (point group: mmm)
- distorted chessboard layers of  $CoO_6$  octahedra
- highly distorted  $CoO_6$  octahedra  $\Rightarrow$
- antiferroelectricity (along x)



- magnetic order develops below  $T_N=21K$
- antiferromagnetism (along y)
- orthorhombic Pmna' (point group: mmm')

antiferroelectricity<sub>x</sub> × antiferromagnetism<sub>y</sub>  $\Rightarrow \pm \chi_{xy}^{me}$ 



• Sign of  $\chi_{xy}^{me}$  depends on the sign of the poling E<sup>0</sup>×H<sup>0</sup> field  $\checkmark$ 



• Sign of  $\chi_{xy}^{me}(\omega)$  depends on the sign of the poling E<sup>0</sup>×H<sup>0</sup> field  $\checkmark$ 

- Remnant directional anisotropy in an antiferromagnet ✓
- Contrast between AFM domains via simple absorption ✓

Kocsis, arXiv:1711.08124

$$\begin{split} P_{x} &= b_{y^{2}} \left[ (S_{a}^{y})^{2} - (S_{b}^{y})^{2} - (S_{c}^{y})^{2} + (S_{d}^{y})^{2} \right] \\ &+ b_{x^{2}-z^{2}} \left( Q_{a}^{x^{2}-z^{2}} - Q_{b}^{x^{2}-z^{2}} - Q_{c}^{x^{2}-z^{2}} + Q_{d}^{x^{2}-z^{2}} \right) \\ &+ b_{2xz} \left( Q_{a}^{2xz} + Q_{b}^{2xz} - Q_{c}^{2xz} - Q_{d}^{2xz} \right) \\ P_{y} &= c_{2xy} \left( Q_{a}^{2xy} - Q_{b}^{2xy} - Q_{c}^{2xy} + Q_{d}^{2xy} \right) \\ &+ c_{2yz} \left( Q_{a}^{2yz} + Q_{b}^{2yz} - Q_{c}^{2yz} - Q_{d}^{2yz} \right) \\ P_{z} &= d_{y^{2}} \left[ (S_{a}^{y})^{2} + (S_{b}^{y})^{2} - (S_{c}^{y})^{2} - (S_{d}^{y})^{2} \right] \\ &+ d_{x^{2}-z^{2}} \left( Q_{a}^{x^{2}-z^{2}} + Q_{b}^{x^{2}-z^{2}} - Q_{c}^{x^{2}-z^{2}} - Q_{d}^{x^{2}-z^{2}} \right) \\ &+ d_{2xz} \left( Q_{a}^{2xz} - Q_{b}^{2xz} - Q_{c}^{2xz} + Q_{d}^{2xz} \right), \end{split}$$

where

$$Q_{a}^{x^{2}-z^{2}} = S_{a}^{x}S_{a}^{x} - S_{a}^{z}S_{a}^{z} ,$$
$$Q_{a}^{2xz} = S_{a}^{x}S_{a}^{z} + S_{a}^{z}S_{a}^{x} ,$$
$$Q_{a}^{2yz} = S_{a}^{y}S_{a}^{z} + S_{a}^{y}S_{a}^{x} ,$$



Kocsis, arXiv:1711.08124



# Thank you for your attention!

PhD and postdoc positions open

in Department of Experimental Physics V, Center for Electronic Correlations and Magnetism of University of Augsburg

istvan.kezsmarki@physik.uni-augsburg.de