

Contribution ID: 148

Type: Talk

Magnetic structure of the frustrated fcc iridate (NH4)2IrCl6: A candidate J_eff=1/2 Mott insulator

Thursday 10 December 2020 14:15 (15 minutes)

Magnetic materials containing octahedrally coordinated Ir^{4+} ions can give rise **novel** $J_{eff} = \frac{1}{2}$ **magnetic moments** due to the interplay of **strong spin-orbit coupling**, onsite Coulomb repulsion and crystalline electric field. The exchange interaction between such moments depends on the geometry of the exchange paths between the magnetic ions and could be **highly anisotropic** such as the **Kitaev exchange** in 2D honeycomb lattice. This could lead to a rich variety of magnetic ground states with **exotic excitation** as has been proposed theoretically and also observed experimentally in several real materials. $(NH_4)_2IrCl_6$ retains its cubic symmetry (fcc) down to very low temperatures and offer best possible condition for the cubic crystalline electric field to realize genuine $J_{eff} = \frac{1}{2}$ state. The crystal and magnetic structures of the $(NH_4)_2IrCl_6$ single crystal have been studied using neutron diffraction, synchrotron X-ray diffraction and resonant inelastic X-ray scattering techniques. The study shows that the interplay of geometrical frustration and the bond dependent exchange frustration stabilizes a type-III collinear AFM ordering at $T_N=2.1$ K with propagation vector ($1 \frac{1}{2} 0$). Thus the bond dependent Kitaev interaction in the fcc lattice may oppose the magnetic frustration which is in sharp contrast to the Kiteav interaction in honeycomb lattices promoting quantum spin-liquid ground states.

Author: Dr KHAN, Nazir (Institute for Quantum Materials and Technologies)

Co-authors: Dr TSIRLIN, Alexander (Experimental Physics VI, Institute of Physics, University of Augsburg); Dr KHALYAVIN, Dmitry (ISIS Pulsed Neutron and Muon Facility); Dr MANUEL, Pascal (ISIS Pulsed Neutron and Muon Facility); Dr UPTON, Mary H. (Advanced Photon Source)

Presenter: Dr KHAN, Nazir (Institute for Quantum Materials and Technologies)

Session Classification: DN2020: Magnetism

Track Classification: DN: Magnetism