

Instrumentation at a compact accelerator-based neutron source

Paul Zakalek, JCNS

Mitglied der Helmholtz-Gemeinschaft

High Brilliance Neutron Source

3 Stations with each:

- 100 kW average
- 100 mA peak
- < 2% duty factor

Beam Multiplexer (2nd floor)

Pulse Distribution to TMRs

24 Hz, 96 Hz, 384 Hz

833 µs, 208 µs, 52 µs

Distributing the protons

Primary neutrons: MeV energy range Moderator: Energy reduction to meV range

Nuclear processes Neutron yield: 10¹⁵ n/s Ta Target spectrum 2.0.10 Brilliance $\left[s^{-1} \operatorname{sr}^{-1}\left(\frac{1\%\Delta\lambda}{\sqrt{2}}\right)^{-1} (\operatorname{mAs})^{-1}\right]$ Moderated spectrum · 5.16 ~⁰. ·). 10 10^{2} 10^{8} 10^{9} 10^{10} 10^{11} 10^{0} 10^{3} 10^{5} 10^{6} 10^{7} 10^{-1} 10^{1} 10^{4} Energy [meV]HIGH BRILLIANCE SOURCE

Forschungszentrum

Primary neutrons: MeV energy range Moderator: Energy reduction to meV range

Moderation process needs time

 \rightarrow convolution of proton pulse and moderation time

ZEA-1 ENGINEERING UND TECHNOLOGIE

Technologie für Spitzenforschung

 \rightarrow neutron pulse shape is modified

Primary neutrons: MeV energy range Moderator: Energy reduction to meV range

Moderation process needs time

- \rightarrow convolution of proton pulse and moderation time
- \rightarrow neutron pulse shape is modified

Primary neutrons: MeV energy range Moderator: Energy reduction to meV range

Moderation process needs time

- \rightarrow convolution of proton pulse and moderation time
- \rightarrow neutron pulse shape is modified

Main Parameters:

- Diffusion (dilutes the neutron cloud)
- Scattering (moderation)
- Absorption (reduces intensity)

Neutrons production for neutron scattering experiments Moderator dependency

Neutrons production for neutron scattering experiments Reflector dependency

Reflector dependency

HIGH BRILLIANCE

SOURCE

Forschungszentrum

1 meV - 120 meV

ZEA-1 | ENGINEERING UND TECHNOLOGIE

Mitglied der Helmholtz-Gemeinschaft

Technologie für Spitzenforschung

Cryogenic moderator optimization

Mitglied der Helmholtz-Gemeinschaft

Technologie für Spitzenforschung

ZEA-1 | ENGINEERING UND TECHNOLOGIE

High Brilliance Neutron Source Possible Target / Moderator / Reflector Layout Beam Multiplexer (2nd floor) Pulse Distribution to TMRs 24 Hz / 833 µs TMR: 24 Hz, 96 Hz, 384 Hz 833 µs, 208 µs, 52 µs Optimized for high intensity and broad wavelength band LINAC 24 Hz / 833 µs \rightarrow PE moderator and Be reflector 384 Hz / 52 us 70 MeV protons 100 mA peak SANS < 6% duty factor • 96 Hz / 208 µs TMR: Reflectometer Optimized for high brilliance and **SPIN-ECHO** lon symmetric neutron pulse with Source fast decay TMR \rightarrow PE moderator and Pb reflector Imaging TOF-TOF 384 Hz / 52 µs TMR: 96 Hz / 208 µs Optimized for short neutron pulse Backscattering spectrometer with no long tail

HIGH

BRILLIANCE

 \rightarrow PE plate moderator and BPE reflector

High Brilliance Neutron Source

Reflectometer

 10^{9}

 10^{8}

 10^{7} 10^{6}

10⁵

10⁴ 10^{3}

 10^{2}

 10^{1} 10^{0} 10⁻¹

Energy [meV]

- Broad bandwidth target station \rightarrow 24 Hz, 833 µs proton beam
- Intensity maximization \rightarrow PE moderator + Be reflector
- Cold energy spectrum \rightarrow LH₂ moderator with 1cm radius

Beam Multiplexer (2nd floor)

- Pulse Distribution to TMRs
- 24 Hz, 96 Hz, 384 Hz
- 833 µs, 208 µs, 52 µs

Reflectometer

Selene concept

•

Instrumentation

Calculated instrument neutron flux

	Length	Resolution	Bandwidth	Flux	Frequency
	[m]			$[cm^{-2} s^{-1}]$	[Hz]
SANS	20.0	$5\% \Delta \lambda / \lambda$	2.0-9.0 Å	9.4×10^{7}	24
Reflectometer	22.0	$4\% \Delta \lambda / \lambda$	1.3-8.0 Å	1.7×10^{7}	24
SELENE reflectometer	22.3	1.5-5.1%	3.0-10.4 Å	4.0×10^{7}	24
Thermal powder diffr.	100.8	0.0061-0.014	0.75-2.4 Å	1.5×10^{8}	24
		$\Delta d/d$			
Cold neutron	6.0	2.0-10.0%	1.0-15.0 Å	3.0×10^{8}	96
imaging l					
Disordered material	61.0	0.016-0.028	0.5-1.2 Å	1.9×10^{7}	96
diffr.		$\Delta d/d$			
Macromolecular diffr.	12.5		2.0-4.0 Å	4.0×10^{7}	96
Cold chopper spectr.	18.5		1.6-10.0 Å	$3.4 imes 10^5$	96
Backscattering spectr.	102.5	3.0-20.0 μeV	6.05-6.0 Å	7.0×10^{6}	96
Epithermal neutron	37.0		25-80 meV	5.0×10^{9}	384
imaging					
High energy chopper	28.5	4% ΔE/E	0.5-2.5 Å	9.0×10^{4}	384
spectr.					
PDGNAA-2	21.0	50%	0.6 eV	2.7×10^{7}	384
			- 10 MeV		

HIGH BRILLIANCE

SOURCE

· CP

lich Centre for Neutron Science

СН

Forschungszentrum

tz-Gemeinschaft Technolog

HBS Team

J. Baggemann Th. Brückel T. Cronert P.-E. Doege T. Gutberlet Jingjing Li **Jiatong Li** Q.Ding A. Schwab Z. Ma N. Ophoven M. Strothmann E. Mauerhofer M. Rimmler U. Rücker J. Voigt P. Zakalek R. Similon - core group: design, experimental verification.

JÜLICH Forschungszentrum

> ZEA-1: Y. Bessler M. Butzek R. Achten R. Hanslik - Engineering

IKP-4: O. Felden R. Gebel A. Lehrach D. Prasuhn - Nuclear physics GSI Helmholtzentrum für Schwerionenforschung GmbH M. Bai W. Barth

- Accelerator

S. Böhm

J.P. Dabruck R. Nabbi - Nuclear simul. UNIVERSITÄT DRESDEN C. Lange T. Langnickel Ch. Haberstroh

M. Klaus

S. Eisenhut

- AKR-2, liquid H₂

H. Podlech O. Meusel - Accelerator

ZEA-1 | ENGINEERING UND TECHNOLOGIE

Technologie für Spitzenforschung

instrumentation

HBS Team

