

Under-compensation effect in Kondo insulator (Yb,Tm)B₁₂

Kirill Nemkovski

Jülich Centre for Neutron Science JCNS Forschungszentrun Jülich GmbH Outstation at MLZ

MLZ is a cooperation between:

Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung

Phys. Rev. B 89, 115121 (2014)

key collaborators

P.A. Alekseev (*NRC "Kurchatov Institute", Russia*) J.-M. Mignot (*Laboratoire Léon Brillouin , France*)

local support

A.S. Ivanov, S. Rols (Institut Laue-Langevin)

samples

V.B. Filipov, N.Yu.Shitsevalova (Institute for Problems of Material Science, Ukraine)

Thermoelectric power in Yb(Tm,Lu)B₁₂

Experimental details for INS experiment

polycrystalline (powder) samples: Yb¹¹B₁₂

$$\begin{split} & Yb_{0.92} Tm_{0.08}{}^{11}B_{12} \\ & Yb_{0.85} Tm_{0.15}{}^{11}B_{12} \\ & Lu_{0.92} Tm_{0.08}{}^{11}B_{12} \end{split}$$

measurements:	IN4 @ ILL
	PG [002] monochromator
	E_i =36 meV, δ E=1.75 meV
	T = 280K

Crystal Field excitations in (Lu,Tm)B₁₂

* Murasik et al., Report IAE -99 /A, (2003) Świerk, Poland

YbB₁₂ vs. (Yb,Tm)B₁₂

Phys. Proc. 42, 18 (2013)

Substitution by non-magnetic Lu

J.Phys.:Cond.Mat. **16** (2004) 2631, J. Sol. Stat. Chem. **179** (2006) 2858

Effect of Tm substitution

Filling the spin gap in (Yb,Tm)B₁₂

Local gap state in YbB₁₂

Thermoelectric power in Kondo systems

(B. Coqblin et al, 2009)

$\Delta_{\rm CF}$ > >T_K

two peaks in Seebeck coefficient at:

 $T_1 \sim \Delta_{CF}$ $T_2 \sim T_K/2$

Analysis of thermoelectric power in Yb(Tm,Lu)B12

$$T_1 \sim \Delta_{CF} = 200 K$$

 $T_2 \sim T_K / 2 = 50 K$
 $T_3 \sim 10 K$

Analysis of thermoelectric power in Yb(Tm,Lu)B₁₂

Thank you for attention