

2nd International Biennial Science Meeting of the MLZ

Grainau, 15-18 June 2015

Detectors for Neutron Scattering Applications

K. Zeitelhack et al.

Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II) Technische Universität München

A short preface to this presentation

Although there exists a vast variety of technologies for neutron detection, I will restrict my presentation to the most common techniques and devices used for neutron scattering applications.

In particular

- Only detectors for *slow neutrons* with energies below the Cadmium cut-off (E_{kin} < 0.3 eV) will be discussed
- The discussion will be limited to "active" detectors, which provide a pulse or a current signal for each individual neutron recorded in the device. They provide information about impact position and arrival time for each individual neutron. They do not provide information about the energy of the detected neutron.
- Although there is some overlap with neutron scattering applications, I will not speak about *Imaging detectors*

Fundamentals of slow neutron detection

Nuclear reactions and potential neutron converters

Detection technologies

Gaseous detectors

³Helium based proportional counters

Devices with ¹⁰B converters

Scintillation detectors

⁶Li-glass based Anger Cameras

⁶LiF:ZnS and B₂O₃:ZnS based devices with clear or wave length shifting fibre readout

Conclusions

FRM II Forschungs-Neutronenque Heinz Maier-Leibnitz

Fechnische Universität München

As neutrons do not undergo coulomb interaction, a nuclear reaction is used to produce charged particles which possess sufficient kinetic energy to create ionization in a gas or excitation in a scintillator

Basically any detector for slow neutrons is a combination of a neutron converter providing this nuclear reaction with a conventional charged particle detector

Requirements for detectors applied in neutron scattering

- Reaction cross section of converter should be large in the energy range of interest
- Converter is stable and usable in "real life" conditions of a detector
- Isotope of choice should be cheap, abundant and easily available
- Signals created by neutrons have to be clearly distinguished from response to gammas and other charged particles
- The detector provides 2-D position resolution in the mm-range and time resolution in the µs-range
- Detectors handle count rates in the kHz to MHz range
- Detector & readout electronics are stable in time

Isotope	State	Reaction	Cross Section (b)	Absorb. Length	Product Energies (keV)	Product Range
³ He	gas	³ He(n,p)t	5333	7.59 bar-cm	P:573, t:191	R _p = 5.4 bar- cm
⁶ Li	solid	⁶ Li(n,α)t	940	230µm	t:2727, α:2055	R _t = 130 μm
¹⁰ B	solid	¹⁰ B(n,α) ⁷ Li	3836	19.9µm	α:1472, ⁷ Li:840	R _α = 3.14 μm
¹⁰ BF ₃	gas	¹⁰ Β(n,α) ⁷ Li	3836	9.82 bar-cm	α:1472, ⁷ Li:840	R _α = 0.42 bar- cm
^{nat} Gd	solid	^{nat} Gd (n,γ)	49122	6.72µm	Ce:29-182 (86.5%)	Λ _{ce} =12.3 μm

for 25meV Neutrons

Data from Th. Wilpert, (HZB)

• Cross section $\sigma \sim \lambda \sim (1/\nu)$ for slow neutrons

³He: Proportional Counter

echnische Universität München

Double Time-of-Flight Spectrometer ToFToF @ FRM II

Position resolution by charge division: Resistive anode wire Q_L L $X \sim (Q_1 - Q_R); Q_0 = (Q_1 + Q_R)$

Performance:

Diameter: d = 8mm - 25mm

Length: 0.3 – 4 m

Resolution: $\Delta x \sim 0.8\% * L$

Excellent position linearity

³He-pressure: 3 – 20 bar

Drawbacks:

Stop gas needed: Argon 1-3 bar High gas gain ~ 600 Reduced n/γ -separation

Position resolution along a 1m long PSD

n + ${}^{3}\text{He} \rightarrow {}^{3}\text{H}$ (191keV) + p (573 keV)

- ³H and p are emitted back-to-back due to momentum conservation
- Readout measures the centroid of charge along the ionization track
- Track orientation homogenously distributed in 4π
- ➔ Measured position is dislocated from true interaction point by ~0.35·R_p

Small Angle scattering detector

Active Area: Resolution: Local count rate: $\sim 100 \text{ kHz}$ / wire Efficiency:

 $\Delta x = \Delta y \approx 8 \text{mm}$ Global count rate: ≤ 2 MHz at 10% dead time ~ 60 % for λ = 6 Å

1000 mm × 1000 mm

SANS1 @ FRM II Array of 128 LPSDs in vacuum 1m long, \emptyset = 8mm, 15bar He

Developed for D22 at ILL, similar LPSD arrays are now in routine operation at any **Neutron Scattering facility**

Grainau, 15 June 2015

LET chopper spectrometer @ ISIS 4m long 1" LPSDs

Source: N. Rhodes, ISIS

ARCS @ SNS 1m long 1" LPSDs

Source: R. Cooper, SNS

"Multitube" design (ILL)

Tube ends welded in common flange All tubes share the same gas volume Stainless steel resistive anode wire

IN5 inelastic spectrometer @ ILL 3m long 1" LPSDs, 4,5bar He,

Source: B. Guerard, ILL

Working principle of a Multiwire Proportional Counter (MWPC)

anode wires:	8 -15µm
spacing s:	≥ 1 mm
gap h:	≥ 2 mm
gas:	³ He+CF ₄ , C ₃ H ₈
gain:	100 -1000
Al-window:	8 mm
readout:	x,y - cathode

Cathode wire readout schemes:

MWPC with individual channel readout

Active Area	250 mm x 250 mm
Efficiency @ 1.8 A	70 %
Position Resolution	$\Delta x, \Delta y \leq 1.3 \text{ mm} \text{ (FWHM)}$
Count rate (global)	\geq 300 kHz (10% dead time)
Gas filling	4 bar 3 He + 2 bar CF ₄
Anode / Cathode wire pitch	1 mm
Readout channels	256 x 256 cathode wires
List mode data	x, y, energy, time

Diffractometer STRESS-SPEC

Grainau, 15 June 2015

2nd International Biennial Science Meeting of the MLZ

¹⁰BF₃: Proportional Counter

nische Universität München

n + ¹⁰B → ⁷Li (0.84MeV) + α (1.47MeV) + γ (0.48MeV) (93%) → ⁷Li (1.02MeV) + a (1.78MeV) (7%)

¹⁰BF₃ works similar to ³He in any Proportional Counter, LPSD, MWPC

Energy deposit 2.3 MeV / neutron !

- excellent n / γ -separation (superior to ³He)
- large detector signals; good position resolution ($\Delta L/L = 0.6\%$)
- Cross section = 72% of Helium
- 96% ¹⁰B-enrichment available

Disadvantage

- corrosive and highly toxic
- efficiency limited by low pressure operation (p < 2 - 2.5 bar) due to attachment
- High operation voltage required

¹⁰Boron: Proportional Counter

sche Universität München

 $n + {}^{10}B \rightarrow {}^{7}Li (0.84 \text{MeV}) + \alpha (1.47 \text{MeV}) + \gamma (0.48 \text{MeV})$ (93%)

→ ⁷Li (1.02MeV) + a (1.78MeV)

(7%)

Boron lined tubes or Multilayer devices

n-Absorption in ¹⁰B: $\lambda_{abs} \sim 20 \ \mu m$ for n_{therm} Range in ¹⁰B: $\alpha = 3.14 \ \mu m$; Li = 1,53 μm

Single layer: ε_{det} < 5% for therm. Neutrons
→ 20 -30 layers required for adequate efficiency !

Pulse height spectra simulated with GEANT4

¹⁰B: 2D-Position Sensitive Detector

Fechnische Universität München

"CASCADE"-Detector

developed at Univ. Heidelberg Stack of ¹⁰B-coated GEM foils

Performance:

Area: $20 \times 20 \text{ cm}^2$ High local rate:> MHzFast timing:100 nsResolution:2.6 mm x 2.6 mm

MIEZE at RESEDA & MIRA

Sauli et al.: <u>http://www.cern.ch/GDD</u>

¹⁰B: 2D-Position Sensitive Detector

Technische Universität München

10 x 20 mm² pixels

96 Grids / 60 wires

Detection efficiency $\epsilon \sim 47\%$ for 2.5Å Gamma sensitivity < 5x10⁻⁵ (1.2MeV)

Blades

96 grids / 360 wires

1024 grids / 512 wires

Candidate for CSPEC @ ESS

CRISP: The "MultiGrid" Concept

Wires run through grids to form anodes

Linear array of cathode grids stacked with 0.5mm gap

Grids consist of Al-blades sputtered with 1µm ¹⁰B₄C

for large area detectors

Grainau, 15 June 2015

¹⁰Boron: Development projects

Fechnische Universität München

Grooved converter

Multiple MWPC Stack developed by FRM II 40 cm x 40 cm

B-10 detector with inclined geometry, proposed by HZG for ESS

Ideally scintillators should provide:

- Strong neutron absorption, high light output
- Fast decay time, low quenching

Practically only inorganic scintillators combined with a Li or Boron neutron converter are used for neutron scattering applications

→ 6 Li-glass(Ce), 6 LiF:ZnS(Ag) and 10 B₂O₃:ZnS(Ag)

Host	Dopant (conc.mol%)	Density ρ	$\rho Z_{\rm eff}^4$ ($\times 10^{-6}$) ^a	Abs. Length at 18Å (mm)	Light yield photons per		α/β Ratio	$\lambda_{em} \left(nm \right)$	$\tau \ (ns)$
	(cone mor /u)	(g/em/)	(×10)	at 1.074 (min)	Neutron	MeV gamma	_		
⁶ Li-glass	Ce	2.5		0.52	~ 6000	~ 4000	0.3	395	75
⁶ LiI	Eu	4.1	31	0.54	50,000	12,000	0.87	470	1400
⁶ LiF/ZnS	Ag	2.6	1.2	0.8	160,000	75,000	0.44	450	>1000
LiBaF3	Ce,K	5.3	35		3500	5000	0.14	190-330	1/34/2100
LiBaF3	Ce,Rb	5.3	35		3600	4500	0.17	190-330	1/34/2400
6Li6depGd(11BO3)3	Ce	3.5	25	0.35	40,000	25,000	0.32	385,415	200/800
6Li6epGd(11BO3)3	Ce	3.9		1	40,000	30,000		420	200/800
$+ \tilde{Y}_2 SiO_5$	Ce	Ş		ş	_	30,000		420	70
Cs ₂ ⁶ LiYCl ₆	Ce (0.1)	3.3		3.2	70,000	22,000	0.66	380	~1000
					_	700		255-470	3
Cs ₂ ⁶ LiYBr ₆	Ce (1)	4.1		3.7	88,000	23,000	0.76	389,423	89/2500
^a As an indication	n of gamma-ray de	tection efficienc	y by photoelec	tric effect ρZ_{eff}^4 val	ues are present	ed CWE van	Eijk, NIM A	529(2004)2	60-267

n + ${}^{6}\text{Li} \rightarrow {}^{3}\text{H}$ (2.73 MeV) + ${}^{4}\text{He}$ (2.06 MeV)

GS20 ⁶Li-glass scintillator

- 6.6 weight% Li, 95% ⁶Li-enriched
- transparent
- efficiency $\varepsilon_{\text{therm}} \approx 75\%$ for 1mm glass
- decay time $\tau = 75$ ns \rightarrow high count rates

Anger Camera

Thin GS20 glass plate read out by an array of photomultiplier tubes

- Disperse light cone on PMT array
- Derive impact position from light intensity of individual PMTs by Center-of-gravity, max. likelihood..

2nd International Biennial Science Meeting of the MLZ

⁶Li-glass(Ce³⁺) Anger Camera

Technische Universität München

Source: R. Cooper, SNS

Anger Camera @ SNS Module:

- Active area: 15cm x 15cm
- Scintillator: 2 mm GS20 Li glass
- 9 MaPMT: H8500, 64 pixel
- Pixels gain compensated
- Modules tillable

Resolution about 1.0mm (FWHM) Distortion < 0.5mm

Single crystal diffractometer TOPAZ @ SNS

23 Anger Cameras installed at SCD TOPAZ

Principle:

- The incident neutron is captured in the 0.3mm thick ⁶LiF/ZnS:Ag scintillator
- Some blue scintillation light from ZnS is collected by a bundle of clear fibres
- Fibres from a pixel are coded to different PMTs in coincidence to determine the position

Performance:

Efficiency:	~ 20% at 1 Å				
γ-sensitivity:	~ 10 ⁻⁶ -10 ⁻⁷				
Speed:	200ns primary				
	80µs afterglow				

Background: 0.5 cm⁻² hr⁻¹

POLARIS Upgrade – 38 modules in vacuum 2954 detector elements; 924 PMTs; 460 Km fibre optic

Grainau, 15 June 2015

⁶LiF/ZnS with WLS-fibre readout

Technische Universität München

Principle:

- The incident neutron is captured in the 0.5mm thick ⁶LiF/ZnS:Ag scintillator
- Some blue scintillation light from ZnS is shifted to green and trapped in the WLS-fibre (Ø=0.5mm)
- This light is detected by PMTs in coincidence to determine the position

Drawbacks:

- Opaqueness limits efficiency
- Low light output of WLS-fibres
- "Ghosting" due to "afterglow"

Coding of WLS-fibre ends to PMTs

$\mathbb{N}_{\mathbb{R}^{12}}$ LiF & B₂O₃ / ZnS with WLS-fibre readout

Fechnische Universität München

Large detectors in use at SNS & J-PARC, prototypes at ISIS and FZJ

- Detection efficiency typically ε ≈ 40% for 1.8Å, in "sandwich" configuration ε ≈ 40% for 1.0Å
 - achieved with ISIS-prototype
- Pixel size ∆x~4mm 20mm
- Gamma sensitivity ~10⁻⁶ (1.2MeV)
- Development of new B₂O₃ scintillator at J-PARC
- Appropriate Coding reduces "ghosting" to 0.1%
- Local count rate still limited: R< 20kHz</p>
- Single pixel readout with MaPMT electronics

2nd International Biennial Science Meeting of the MLZ

There is a broad variety of technologies used for slow neutron detection.

All devices consist of a combination of a neutron converter (³Helium, ¹⁰Boron, ⁶Lithium) with a charged particle detector

All technologies allow to build detectors that cover all ranges of position resolution, efficiency, rate capability, n/γ -separation capability required for neutron scattering application.

There is no "best" technology or detector

In practice, it's not all about efficiency, rate capability etc. Stability, robustness, homogeneity are important, too.