Band Structure of Helimagnons in MnSi Resolved by Inelastic Neutron Scattering

M. Kugler^{1, 2}, G. Brandl^{1, 2}, J. Waizner³, M. Janoschek⁴, R. Georgii^{1, 2}, A. Bauer¹, K. Seemann^{1, 2}, A. Rosch³, C. Pfleiderer¹, P. Böni¹ and M. Garst³

¹ Physik-Department E21, Technische Universität München, 85748 Garching, Germany

² Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, 85748 Garching, Germany

³ Institute for Theoretical Physics, University of Cologne, 50937 Köln, Germany

⁴ Condensed Matter and Magnet Science, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

3. DMI Workshop: 26-30 May 2015 Pskov, Russia

Outline

- summary of the helimagnon model
- introduction to the instrument MIRA
- specific setups and example scans
- result: helimagnon dispersion relation

• B20, no inversion symmetry \Rightarrow DMI

- B20, no inversion symmetry \Rightarrow DMI
- model system for chiral magnetism:
 - exchange interaction \Rightarrow parallel spins
 - DM interaction \Rightarrow perpendicular spins
 - together \Rightarrow long spin spiral: \sim 180 Å

- B20, no inversion symmetry \Rightarrow DMI
- model system for chiral magnetism:
 - exchange interaction \Rightarrow parallel spins
 - DM interaction \Rightarrow perpendicular spins
 - together \Rightarrow long spin spiral: \sim 180 Å
 - cubic anisotropy \Rightarrow pinning: <111>

- B20, no inversion symmetry \Rightarrow DMI
- model system for chiral magnetism:
 - exchange interaction \Rightarrow parallel spins
 - DM interaction \Rightarrow perpendicular spins
 - together \Rightarrow long spin spiral: \sim 180 Å
 - cubic anisotropy \Rightarrow pinning: <111>
- increasing magnetic field:
 - 1. helices align \Rightarrow single-domain: \sim 0.1 T
 - 2. spins cant \Rightarrow field-polarized: $\sim 0.6 \text{ T}$

- model system for chiral magnetism:
 - exchange interaction \Rightarrow parallel spins
 - DM interaction \Rightarrow perpendicular spins
 - together \Rightarrow long spin spiral: \sim 180 Å
 - cubic anisotropy \Rightarrow pinning: <111>

- increasing magnetic field:
 - 1. helices align \Rightarrow single-domain: \sim 0.1 T
 - 2. spins cant \Rightarrow field-polarized: \sim 0.6 T
- skyrmion phase: three phase-coherent helices in an equilateral triangle: ~0.2 T

model parameters (MnSi, 20 K):

1. momentum scale: $k_h = 2\pi/\lambda_h = 0.036 \text{ Å}^{-1}$

model parameters (MnSi, 20 K):

- 1. momentum scale: $k_h = 2\pi/\lambda_h = 0.036 \text{ Å}^{-1}$
- 2. energy scale: $g\mu_B\mu_0H_{c2}^{int}=\mathcal{D}k_h^2=0.062 \text{ meV}$

model parameters (MnSi, 20 K):

- 1. momentum scale: $k_h = 2\pi/\lambda_h = 0.036 \text{ Å}^{-1}$
- 2. energy scale: $g\mu_B\mu_0H_{c2}^{int}=\mathcal{D}k_h^2=0.062 \text{ meV}$

3. dipolar strength:
$$\chi_{con}^{int} = 0.34$$

model parameters (MnSi, 20 K):

- 1. momentum scale: $k_h = 2\pi/\lambda_h = 0.036 \text{ Å}^{-1}$
- 2. energy scale: $g\mu_B\mu_0H_{c2}^{int} = Dk_h^2 = 0.062 \text{ meV}$

3. dipolar strength:
$$\chi_{con}^{int} = 0.34$$

here: $(H/H_{c2})^2 \ll 1 \Rightarrow$ neglect field dependence

parameters are well known \Rightarrow absolute prediction !

model parameters (MnSi, 20 K):

- 1. momentum scale: $k_h = 2\pi/\lambda_h = 0.036 \text{ Å}^{-1}$
- 2. energy scale: $g\mu_B\mu_0 H_{c2}^{int} = Dk_h^2 = 0.062 \text{ meV}$

3. dipolar strength:
$$\chi_{con}^{int} = 0.34$$

here: $(H/H_{c2})^2 \ll 1 \Rightarrow$ neglect field dependence

parameters are well known \Rightarrow absolute prediction !

 $q_{\perp} = 0$: $\hbar \omega(q_{\parallel}) = \mathcal{D}|q_{\parallel}| \sqrt{q_{\parallel}^2 + (1 + \chi_{con}^{int})k_h^2}$ centered at $\pm k_h$ and 0

 $q_{\perp} = 0$: $\hbar \omega(q_{\parallel}) = D|q_{\parallel}| \sqrt{q_{\parallel}^2 + (1 + \chi_{con}^{int})k_h^2}$ centered at $\pm k_h$ and 0 $q_{\perp} > 0$: number, energies and 'flatness' of bands increase with q_{\perp}

Multi-Domain vs. Single-Domain

- momentum notation: with respect to the red domain || [111]
- ► zero field: contributions from four domains ⇒ intensity plateaus
- ► small field: single-domain state ⇒ well defined peaks multi-domain measurements: Janoschek et al., PRB 81 214436 (2010).

• neutron guide \Rightarrow white beam

- neutron guide \Rightarrow white beam
- three rotation axes:
 - 1. monochromator angle: selects initial energy *E_i*

- neutron guide \Rightarrow white beam
- three rotation axes:
 - 1. monochromator angle: selects initial energy *E_i*

- analyzer angle: selects final energy E_f
- energy transfer $\hbar \omega = E_i E_f$:

- neutron guide \Rightarrow white beam
- three rotation axes:
 - 1. monochromator angle: selects initial energy *E_i*

- analyzer angle: selects final energy E_f
- energy transfer $\hbar\omega = E_i E_f$:
 - magnon creation: $\hbar \omega > 0$
 - mag. annihilation: $\hbar\omega < 0$

- neutron guide \Rightarrow white beam
- three rotation axes:
 - 1. monochromator angle: selects initial energy *E_i*
 - 2. scattering angle at sample: selects ${\bm Q} = {\bm G} + {\bm q}$
 - analyzer angle: selects final energy E_f
- energy transfer $\hbar\omega = E_i E_f$:
 - magnon creation: $\hbar \omega > 0$
 - mag. annihilation: $\hbar\omega < 0$
- ▶ find dispersion relation ħω(q)

The Cold TAS MIRA@FRM-II

- Iocation: guide hall of FRM-II
- cold neutrons: E_i = 3...5 meV
- multi-purpose instrument:
 - ► SANS ⇒ structure
 - TAS \Rightarrow dynamics
- two samples \sim 8 cm³, $\eta \approx$ 10'
- mostly at 20 K ($\sim 2/3T_C$)
- E_i and **q** constant \Rightarrow scan $\hbar\omega$

The Cold TAS MIRA@FRM-II

- Iocation: guide hall of FRM-II
- cold neutrons: $E_i = 3...5$ meV
- multi-purpose instrument:
 - SANS ⇒ structure
 - TAS \Rightarrow dynamics
- two samples \sim 8 cm³, $\eta \approx$ 10'
- mostly at 20 K (\sim ²/₃ T_C)
- E_i and **q** constant \Rightarrow scan $\hbar\omega$
- ▶ generic example scan →

- horizontal $B \Rightarrow \mathbf{k}_h$ in plane
- can select both: $q_{\parallel} \& q_{\perp}$
- suboptimal for the bands, but can show: they're flat

- horizontal $B \Rightarrow \mathbf{k}_h$ in plane
- can select both: $q_{\parallel} \& q_{\perp}$
- suboptimal for the bands, but can show: they're flat
- ► ideal for the 3 dispersive branches at q_⊥ = 0 → →

(example scans at 20 K)

- vertical field \Rightarrow **k**_h \perp plane
- tune band energies with q_{\perp}
- ► course vertical resolution (q_{||}) ⇒ collect large band intensity

- vertical field \Rightarrow **k**_h \perp plane
- tune band energies with q_{\perp}
- ► course vertical resolution (q_{||}) ⇒ collect large band intensity

 \blacktriangleright resolve the first two bands \rightarrow

► another orientation: $q_{\perp} || [111] \rightarrow q_{\perp} || [001]$ ⇒ same result, decoupled from nuc. lattice

- ► another orientation: $q_{\perp} || [111] \rightarrow q_{\perp} || [001]$ \Rightarrow same result, decoupled from nuc. lattice
- ħω < 0: increases efficiency ⇒ more bands *E*-dependent analyzer efficiency overcomes Bose statistics.

Results for the Helimagnon Bands

- band energies vs. q_⊥ at 20 K, setups 2 & 3
- dotted lines:
 -universal spectrum
 -agrees at low ħω √
 -deviates at large ħω

- band energies vs. q_{\perp} at 20 K, setups 2 & 3
- dotted lines: -universal spectrum -agrees at low $\hbar\omega$ \checkmark -deviates at large $\hbar\omega$
- full lines:
 - -higher order correction
 - -agreement for all $\hbar \omega \checkmark$

 $-\mathcal{A} \sim (ak_h)^2 \approx 0.01 \checkmark$ -at $3k_h \to 3^2 (ak_h)^2 \sim 10\%$

 $\mathcal{F} \sim (\nabla_i \hat{n}_j)^2 + 2k_h \hat{n} (\nabla \times \hat{n}) + \frac{A}{k^2} (\nabla^2 \hat{n})^2$ + dipolar + Zeeman

Results for the Dispersive Branches

- dispersive modes vs. q_{||} at 20 K, setup 1
- higher order correction:
 -important for blue branch
 -not for the red/green one

- dispersive modes vs. q_{||} at 20 K, setup 1
- higher order correction:
 -important for blue branch
 -not for the red/green one
 - black dashed lines: -vertical resolution $\pm 1/2 k_h$ -along $q_\perp \Rightarrow$ band split-off -10% effect for red branch -small effect for the others
- resolve all three modes

Results for the Dispersive Branches

15

T (K)

20

25

30

0.0

0

5

10

- until now: $\hbar\omega(\mathbf{q}, T = 20 \text{ K})$
- next: ħω(**q** = constant, *T*):
 -setup 1: q_{||} = 2.1 k_h
 -setup 2: q_⊥ = 2.5 k_h
- two modes for each setup

Renormalization of the Helimagnons

- until now: $\hbar\omega(\mathbf{q}, T = 20 \text{ K})$
- next: ħω(**q** = constant, *T*):
 -setup 1: q_{||} = 2.1 k_h
 -setup 2: q_⊥ = 2.5 k_h
- two modes for each setup
- ► full lines include: -mainly $H_{c2}^{int}(T) \leftarrow \chi_{ac}$ [1] $-k_h(T) \leftarrow SANS$ [2] & TAS -resolution convolution

Bauer *et al.*, PRB **82**, 064404 (2010).
 Grigoriev *et al.*, PRB **74**, 214414 (2006).

- summary:
 - clear identification due to the single-domain state
 - all three dispersive branches and at least five bands
 - ▶ softening of the helimagnons like $H_{c2}(T)$ along q_{\parallel} & q_{\perp}
 - parameter-free prediction confirmed for low energies
 - single parameter $\mathcal{A} = -0.0073 \pm 0.0004$ for all energies
- outlook:
 - ▶ helimagnons in the conical phase, up to *H*_{c2}
 - spin-waves within the skyrmion crystal
 - \blacktriangleright helimagnons under pressure \rightarrow NFL phase
 - polarized TAS \Rightarrow polarization of spin-waves
 - ► other DM-helimagnets: Cu₂OSeO₃, Fe_{1-x}Co_xSi, ...
 - damping of helimagnons

for details, see arXiv:1502.06977 and

thanks for your attention!