

Peak effect and Vortex Lattice Structural Transition in Optimally Doped Ba_{1-x}K_xFe₂As₂

16 June 2015 | Sultan Demirdis Jülich Centre for Neutron Science at MLZ

Collaboration

• Kees van der Beek

Laboratoire des Solides Irradiés, Ecole Polytechnique, CNRS, CEA/DSM/IRAMIS, Université Paris-Saclay, 91128 Palaiseau cedex, France

• Yixi Su

Jülich Center for Neutron Science (JCNS), Forschungszentrum Jülich GmbH, JCNS at MLZ, Lichtenberstraße, D-85747, Garching, Germany

Sebastian Mühlbauer

Technische Universität München, Forschungsneutronenquelle Heinz Maier-Leibnitz, (FRM II) D-85748, Garching, Germany

Thomas Wolf

Karlsruher Institut für Technologie, Institut für Festkörperphysik, Karlsruhe, Germany

UNITABLE FOR NEUTON SCIENCE Type II superconductors, mixed state

R=0 for T<T_c Expulsion of the magnetic flux

Type II superconductors, mixed state, vortex line

R=0 for T<T_c Expulsion of the magnetic flux

Vortex line energy

$$\varepsilon_0 = \Phi_0^2 / 4\pi \mu_0 \lambda_{ab}^2$$

In the absence of disorder: triangular lattice, $a_{\Delta}=1.075 \sqrt{(\Phi_0/B)}$

4

Vortex pinning and Critical current density j_c

Defects in the material are traps for vortices F_p : Force to untrap $j_c = F_p/B$: critical current density

Critical current density *j_c*, and Peak effect

Peak effect in (Ba,K)Fe₂As₂

Example 7 Critical current density j_c **, and Peak effect**

The Section Science Peak effect in different systems : NbSe₂

- 1st order transition of vortex lattice (Paltiel, PRL **85**, 3712 (2000)).
- Relatively close to B_{c2}
- Weak pinning or edge pinning below B_{sp} (Koorevaar, Paltiel)
- Single crystal to polycrystal (Troainovski, PRL 89, 147006 (2002))

Peak effect in different systems : MgB₂

- 1st order transition of vortex lattice, relatively close to B_{c2} (Klein, Nature (2000).)
- From ordered Bragg Glass to a disordered vortex phase tuned by artificial disorder is mediated by the proliferation of dislocations (point defects/irradiation (Klein, Phys Rev B (2010).)
- Weak pinning below B_{sp}

Onset of the peak effect shifted with increasing disorder

Peak effect in different systems : Ba_{1-x}K_xBiO₃

- Well below B_{c2} (Klein Nature 413, 404 (2001), Barilo Phys. Rev B (1998)).
- Weak pinning Bragg glass below B_{sp} that goes to a vortex glassy phase above B_{sp} (neutrons, Journard et al 1999)
- Vanishing small angle neutron scattering (SANS) signal at B_m, B_{sp}

Jülich Centre for Neutron Science

Peak effect in different systems : Bi₂Sr₂CaCu₂O₈

- 1st order transition (van der Beek, Avraham) well below B_{c2} (Chikumoto)
- Continuation of melting line B_m(T) (van der Beek, Konczykowski)
- Weak pinning, Bragg glass below B_{sp} (Kim, Fuchs, Fasano)
- Collapse of longitudinal (B // c axis) vortex line correlations (Colson)

Member of the Helmholtz Association

Jülich Centre for Neutron Scien

Peak effect in different systems : Bi₂Sr₂SrCu₂O₈

- 1st order transition (van der Beek, Avraham) well below B_{c2} (Chikumoto)
- Continuation of melting line B_m(T) (van der Beek, Konczykowski)
- Weak pinning, Bragg glass below B_{sp} (Kim, Fuchs, Fasano)
- Collapse of longitudinal (B // c axis) vortex line correlations (Colson)

Peak effect in different systems : Bi₂Sr₂SrCu₂O₈

- 1st order transition (van der Beek, Avraham) well below B_{c2} (Chikumoto)
- Continuation of melting line B_m(T) (van der Beek, Konczykowski)
- Weak pinning, Bragg glass below B_{sp} (D. T. Fuchs, Y. Fasano)
- Collapse of longitudinal (B // c axis) vortex line correlations (S. Colson)
- Melting regardless of positional order (Banerjee, Menghini, Konczykowski, Colson)
- Vanishing SANS signal at B_m, B_{sp} (Cubitt)

R. Cubitt Nature (London) 365, 407 (1993)

Peak effect in different systems : iron-based s.c.: PrFeAsO_{1-y}, NdFeAsO

ülich Centre for Neutron Science

C.J. van der Beek et al., Phys. Rev. B 81,174517 (2010)

G.P. Mikitik and E.H. Brandt, Phys. Rev. B **64**, 184514 (2001); Phys. Rev. B **71**, 012510 (2005).

Peak effect in different systems : iron-based s.c. and Ba_{1-x}K_xAs₂Fe₂

• Hysteretic magnetization

Vortex Pinning in Ba_{1-x}K_xAs₂Fe₂₁

• Hysteretic magnetization, the screening current density...

The effect of thermally activated vortex creep (relaxation)

M. Konczykowski et al, Phys Rev. B 86, 024515 (2012).

Vortex Pinning in Ba_{1-x}K_xAs₂Fe₂₁

- Strong pinning below B_{sp}: chemical disorder
- Weak pinning around B_{sp}: dopant atoms, Fe vacancies

SANS on the vortex ensemble in Ba_{1-x}K_xFe₂As₂

- <u>Motivation</u>:
 - How do we go "dirty" to "clean"?
 - Can we observe the vortex lattice in a doped iron-based superconductor?

Nearly isotropic hexagonal VL with no symmetry transitions up to high fields

H. Kawano-Furukawa et. al. PRB 84, 024507 (2011)

• @SANS 1 instrument

Neutrons sensitive to magnetism Rocking the sample gives all lattice Bragg peaks

 $(Ba_{1-x}K_x)Fe_2As_2$, x = 0.36 FC conditions for T = 3.5 - 45 K Under different fields B = 0.25-2 T For each field configuration the bck has been measured

SANS on the vortex ensemble in Ba_{1-x}K_xAs₂Fe₂

• Heinz Maier-Leibnitz Zentrum (Garching)

4000 Resolution 0.70.25 T 0.5 T FWHM [degree] FWHM 0.5 3000 0.75 T 0.40.3 1 T Intensity 0.2 1.5 T 0.12000 2 T $\mu_0 H_a [T]$ 1000 -0.8 -0.4250.425 0.85 0

Neutrons sensitive to magnetism Rocking the sample gives all lattice Bragg

 $(Ba_{1-x}K_x)Fe_2As_2$, x = 0.36 FC conditions for T = 3.5 - 45 K Under different fields B = 0.25 - 2 T For each field configuration the bck has been measured

Rocking angle (degree)

SANS on the vortex ensemble in Ba_{1-x}K_xAs₂Fe₂

• Heinz Maier-Leibnitz Zentrum (Garching)

Resolution of SANS instrument

Neutrons sensitive to magnetism Rocking the sample gives all lattice Bragg peaks

 $(Ba_{1-x}K_x)Fe_2As_2$, x = 0.36 FC conditions for T = 3.5 - 45 K Under different fields B = 0.25 - 2 T For each field configuration the bck has been measured

$$\sigma_{res} = \sqrt{4\pi^2 (\delta\theta/\lambda_n)^2 + q^2 (\Delta\lambda_n/\lambda_n)^2}$$

Vortex orientational order in Ba_{1-x}K_xAs₂Fe₂

Vortex orientational order in Ba_{1-x}K_xAs₂Fe₂

Vortex orientational order in Ba_{1-x}K_xAs₂Fe₂

Structural transition of the vortex ensemble

Analysis of SANS signal of the vortex ensemble in Ba_{1-x}K_xAs₂Fe₂

• Form factor
$$F$$
 (local field distribution)

• Structure factor S (lattice structure) - For ideal VL, S = 1

 $I = F^2 S = F^2(T) \int dq_x \int dq_y S(q_x, q_y, K_0 \omega)$

$$I_q = 2\pi V \phi \left(\frac{\gamma}{4}\right)^2 \frac{\lambda_n^2}{\Phi_0^2 q} |F(q)|^2.$$

Precision Ginzburg-Landau Solution of Ideal Vortex Lattices for any induction and symmetry: prediction of the vortex lattice form factor *F*

E. H. Brandt PRL 78, 11 (1997)

• Structure factor S (lattice structure) - For ideal VL, S = 1

 $I = F^2 S = F^2(T) \int dq_x \int dq_y S(q_x, q_y, K_0 \omega)$

Julich Centre for Neutron Science

How does vortex order come about in Ba_{1-x}K_xAs₂Fe₂?

The FC protocol of SANS reflects the vortex ensemble as quenched at $T_{irr}(B)$ that plays the role of freezing temperature T_f

• $B_a \le 0.25$ T the field cooling across the high field phase has no effect: thermal activation (creep) equilibrates the VL in the experiment time scale and only at the $B_{OD}(T)$ the VL is fixed. VL is quenched in the low field vortex state where S=1.

- $B_a \le 0.25$ T the field cooling across the high field phase has no effect: thermal activation (fast creep) equilibrates the VL in the experiment time scale and only at the $B_{OD}(T)$ the VL is fixed. VL is quenched in the low field vortex state where S=1.
- $0.25 T \le B_a \le 1 T$ the field cooling across the high field phase starts to effect the vortex positions: this results to a progressive disordering in the VL and a concomitant decrease in the S.

- $B_a \le 0.25$ T the field cooling across the high field phase has no effect: thermal activation (fast creep) equilibrates the VL in the experiment time scale and only at the $B_{OD}(T)$ the VL is fixed. VL is quenched in the low field vortex state where S=1.
- $0.25 \text{ T} \le B_a \le 1 \text{ T}$ the field cooling across the high field phase starts to effect the vortex positions: this Results to a progressive disordering in the VL and a concomitant decrease in the S.
 - B_a ≥ 1 T the applied field is bigger then B_{OD} at all T, the low field ordered phase in never reached (slow creep). The VL is quenched as a disordered polycrystal in the high field phase.

- The observed vortex structure is determined by the high T vortex dynamics
- The quenched vortex ensemble is fixed by strong pinning
- Representative of the high T structure :

Is the low-field phase a Bragg glass ?

- Bragg peak has power law shape, I ~ q^{3-h}
- Rocking curve Intensity decreases without broadening
- Structure factor height corresponds to R_a
- Bragg peak height decreases as B^{-3/2}

Is the low-field phase a Bragg glass ?

- Bragg peak has power law shape, I ~ q^{3-h} hard to tell
- Rocking curve intensity decreases without broadening no
- Structure factor height corresponds to R_a
- Bragg peak height decreases as B^{-3/2}

Is the low-field phase a Bragg glass ?

- Bragg peak has power law shape, $I \sim q^{3-h} hard$ to tell
- Rocking curve intensity decreases without broadening no
- Structure factor height corresponds to R_a
- Bragg peak height decreases as B^{-3/2}

Is the low-field phase a Bragg glass?

- Bragg peak has power law shape, I ~ q^{3-h} hard to tell
- Rocking curve intensity decreases without broadening no
- Height corresponds to R_a
- Bragg peak intensity B^{-3/2}

T. Klein et al, Nature 413, 404 (2001)

Is the low-field phase a Bragg glass?

- Bragg peak has power law shape, I ~ q^{3-h} hard to tell
- Rocking curve intensity decreases without broadening no
- Height corresponds to R_a
- Bragg peak intensity B^{-3/2}

T. Klein et al, Nature 413, 404 (2001)

- SANS Observation of orientationally ordered vortex lattice in a doped iron-based superconductor (which is a strong pinning system)
- Structural transition (Order-Disorder) of VL in optimally doped $(Ba_{1-x}K_x)Fe_2As_2$
- 2^{nd} magnetization peak observed (similar to NdFeAsO, YBa₂Cu₃O_{7-d})

The two are correlated

- Low field vortex phase, B < 0.5 T : structure factor ~1 but Bragg glass not obvious
- High field vortex phase is a vortex polycrystal ,B > 0.5 T : steep drop of the VL structure factor
- VL order and Bragg peak intensity determined by dynamics of the high field state

Thank you!

16/06/2015