Protein and water dynamics at the atomic level

Ramos, J.1,2,3 Laux, V.2,3 Lemee, M.4 Bowler, M.,4 Diederichs, K.,5 Haertlein, M.,2,3 Forsyth, V.T.,2,3,6 Mossou, E.,3,7 Larsen, S.5 & Langkilde, A.E.1

1Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
2Institute Laue-Langevin, 71 avenue des Martyrs, 38000 Grenoble, France.
3European Synchrotron Radiation Facility, 71 avenue des Martyrs, 38000 Grenoble, France.
4European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38000 Grenoble, France.
5Department of Biology, University of Konstanz, Box 647, D-78457 Konstanz, Germany.
6Faculty of Natural Sciences, Keele University, Staffordshire, ST5 5BG, United Kingdom.
7European Synchrotron Radiation Facility, 71 avenue des Martyrs, 38000 Grenoble, France.

Introduction

Protein biological function is intimately related to protein structure as well as dynamics, at the molecular and atomic scales. While X-ray diffraction has been the most prominent technique in deciphering protein structure, atomic thermal motion has been somewhat overlooked due to limitations inherent to X-ray models, which do not account for deformations of valence electron-densities [1]. On the other hand, neutron diffraction has been the technique of choice to study atomic motion in small-molecule crystallography [2]. Our work aims at pushing the boundaries of neutron macromolecular crystallography to obtain anisotropic atomic displacement parameters (ADPs) from perdeuterated hen egg-white (D-HEWL) crystals. Complete atomic resolution neutron diffraction data allows a comparative analysis between neutron and X-ray derived ADPs, highlighting potential discrepancies.

Production of D-HEWL in E. coli inclusion bodies and in vitro refolding [3]

The complete picture of HEWL active site

Crystallization of refolded D-HEWL for neutron diffraction

Atomic resolution neutron macromolecular crystallography

Resolution

2.3 Å

2.0 Å

1.5 Å

1.6 Å

Different levels of structural information can be obtained from neutron diffraction depending on data resolution and sample deuterization.

Conclusions

- Production of perdeuterated protein in significant amounts was achieved by using the E. coli system and posterior in vitro refolding [3].
- Triclinic D-HEWL crystals of 4-5 mm³ were obtained by seeding techniques.
- Complete atomic resolution neutron diffraction data were recorded in D19, at Institute Laue-Langevin.
- The room temperature neutron structure enabled the unambiguous assignement of H positions, clarifying the configuration and dynamics of the enzyme’s active site.
- Preliminary results show that X-ray and neutron derived ADPs are systematically different.

Neutron data at room temperature was recorded from a crystal grown at a pH close to optimal for enzymatic activity. The Glu35 and Asp52 catalytic residues were found to be protonated and deprotonated, respectively. O61 from Asp52 side-chain carboxylate group is restrained by a short H-bond with Asn59, while O62 participates in dynamical H-bonds with Asn46, Asn44 and W306. Glu35 forms an H-bond with the catalytic water W332/A, which is transient.

ADPs from X-ray and neutron models are different

ADPs derived from room temperature X-ray diffraction data appear to be systematically larger than those obtained from equivalent neutron data. Additionally, X-ray ADPs are consistently more isotropic (anisotropy closer to 1) than those in the neutron model. Preliminary results suggest that neutron maps, due to the ability to locate deuterium atoms, allow a better interpretation of protein disorder. Therefore, the neutron ADPs have greater physical and biological meaning compared to those from the X-ray model.

References