European Conference on Neutron Scattering 2023

Contribution ID: 74 Type: Poster

Electron-phonon coupling in $Mn_{1-x}Fe_xSi$

Tuesday, 21 March 2023 16:00 (2 hours)

The interplay of ferromagnetic exchange, Dzyaloshinsky-Moriya interaction and crystal potential results in the complex phase diagram of the chiral magnet MnSi ($T_C \approx 30$ K). In Mn_{1-x}Fe_xSi, long-range magnetic order is suppressed and helimagnetic correlations vanish at $x \approx 0.2$ along with a redistribution of d states at the Fermi energy.

Here, we present a study of the lattice dynamical properties of $\mathrm{Mn_{1-x}Fe_xSi}$ with $0 \le x \le 0.22$. Employing time-of-flight neutron spectroscopy and high energy resolution inelastic x-ray scattering, we investigate the doping dependence of phonon energies, E_{phon} , and line widths, Γ_{phon} ($\Gamma_{phon} \propto 1$ /life time). In contrast to the general trend of slightly increasing energies with doping because of the reduced lattice constant, we find a significant softening and broadening of a phonon mode propagating along the [111] direction, which is also the direction of the magnetic ordering wave vector in MnSi. Ab-initio lattice dynamical calculations based on density-function theory predict an increasingly strong electron-phonon coupling for this particular mode linked to changes of the Fermi surface geometry upon doping.

Primary author: WEBER, Frank (Karlsruhe Institute of Technology)

Co-authors: BAUER, Andreas (Technische Universität München); Dr SAID, Ayman (Argonne National Laboratory); PFLEIDERER, Christian; Dr VONESHEN, David (Rutherford Appleton Laboratory); KHAN, Nazir (Karlsruhe Institute of Technology (KIT)); DE LA PENA-SEAMAN, Omar (Benemerita Universidad Autonoma de Puebla); HEID, Rolf (Karlsruhe Institute of Technology)

Presenter: WEBER, Frank (Karlsruhe Institute of Technology)

Session Classification: Poster session TUESDAY

Track Classification: Magnetism, Superconductivity, Topological Systems, Magnetic Thin Films an other electronic phenomena