

Development of neutron detectors with solid converters and Timepix3 readout

<u>Saime Gürbüz¹</u>, Thomas Block¹, Klaus Desch¹, Markus Gruber¹, Jochen Kaminski¹, Markus Köhli^{1,2}, Michael Lupberger¹, Divya Pal¹

¹Rheinische Friedrich-Wilhelms-Universität Bonn

²Ruprecht-Karls-Universität Heidelberg

20-23 March 2023

EUROPEAN CONFERENCE **ON NEUTRON SCATTERING**

Bundesministerium für Bildung und Forschung

GEFÖRDERT VOM

https://www.pi.uni-bonn.de/desch/en/research/gas-filled-detectors/

- Highly granular gaseous detectors
- Novel detectors with improved capabilities to improve the potential of future instruments
- Expertise on Timepix3 readout with Scalable **Readout Systems**
- Part of Research and Technology Center **Detector Physics (FTD)**

GasDet - Development of novel gaseous detectors

https://cds.cern.ch/record/2314331/

Research and Technology Center for Detector Physics FT

- Forschungs- und Technologie-Zentrum \bullet Detektorphysik (FTD)
- Studies on the latest detector technologies for the detection of radiation and particles
- Lab Space: 2010m²
- Nano-micro fabrications, bonding machines, inspection devices, SEM etc.

https://www.ftd.uni-bonn.de/en/homepage?set_language=en

Prof. Dr. Klaus Desch

Novel neutron detectors (@University of Bonn)

Element	Reaction				
³ He	3 He + n	\rightarrow	$^{3}H + p + 764 keV$		
⁶ Li	⁶ Li + n	\rightarrow	$^{3}\text{H} + \alpha + 4.78 \text{MeV}$		
$^{10}\mathbf{B}$	${}^{10}B + n$	\rightarrow	$^{7}\text{Li} + \alpha + 2.79 \text{MeV} (6\%)$		
	${}^{10}B + n$	\rightarrow	$^{7}\text{Li}^{*} + \alpha + 2.31 \text{ MeV} (94\%)$		
¹¹³ Cd	¹¹³ Cd + n	\rightarrow	114 Cd + γ + 9.04 MeV		
¹⁵⁵ Gd	¹⁵⁵ Gd + n	\rightarrow	156 Gd+ γ +e ⁻ +(30–180) keV		
¹⁵⁷ Gd	¹⁵⁷ Gd + n	\rightarrow	158 Gd+ γ +e ⁻ +(30–180) keV		
²³⁵ U	²³⁵ U + n	\rightarrow	fission fragments + 160 MeV		

Solid converters

Scalable Readout System

Scalable Readout System (SRS)

- FPGA Board developed by the RD51 Collaboration
- Scalable from a single front end board to a mid-size experiment.
 - Larger user community
 - Several front-end chips implemented
 - Comparably low cost per channel

M. Gruber at al., "SRS-based Timepix3 readout system", https://iopscience.iop.org/article/10.1088/1748-0221/17/04/C04015

M. Lupberger et al. "Particle Physics Readout Electronics and Novel Detector Technologies for Neutron Science" NIMA 1046 (2023) 167753

RD51 collaboration.

Novel neutron detectors

Neutron Micro Channel Plate (nMCP)

Neutron Time Projection Chamber (nTPC)

S. Gürbüz - ECNS2023

Gaseous Electron Multiplier (GEM) based neutron detector (nGEM)

Novel neutron detectors

Neutron Micro Channel Plate (nMCP)

Neutron Time Projection Chamber (nTPC)

S. Gürbüz - ECNS2023

GEM based neutron detector

Neutron Micro Channel Plate (nMCP)

S. Gürbüz - ECNS2023

B and Gd enriched Micro Channel Plates (MCP):

Converts neutrons to electrons and produces the signal.

Quad-Timepix3 ASIC:

Electrons are captured and data readout.

Aim:

Combining features of the Timepix3 with the efficiency and spatial resolution of neutron sensitive MCP

9

Neutron Micro Channel Plate (nMCP)

S. Gürbüz - ECNS2023

Neutron Sensitive MCP with optical readout by S.Pinto

Neutron Sensitive MCP with timepix readout by A. Tremsin

Neutron Micro Channel Plate (nMCP)

Element	Reaction				
³ He	3 He + n	\rightarrow	${}^{3}\text{H} + \text{p} + 764 \text{keV}$		
⁶ Li	⁶ Li + n	\rightarrow	$^{3}\text{H} + \alpha + 4.78 \text{MeV}$		
$^{10}\mathbf{B}$	${}^{10}B + n$	\rightarrow	$^{7}\text{Li} + \alpha + 2.79 \text{ MeV} (6\%)$		
	${}^{10}B + n$	\rightarrow	$^{7}\text{Li}^{*} + \alpha + 2.31 \text{ MeV} (94\%)$		
¹¹³ Cd	$^{113}Cd + n$	\rightarrow	114 Cd + γ + 9.04 MeV		
¹⁵⁵ Gd	¹⁵⁵ Gd + n	\rightarrow	156 Gd+ γ +e ⁻ +(30–180) keV		
¹⁵⁷ Gd	¹⁵⁷ Gd + n	\rightarrow	158 Gd+ γ +e ⁻ +(30–180) keV		
²³⁵ U	$^{235}U + n$	\rightarrow	fission fragments + 160 MeV		

Abir, Muhammad. (2013). AFIP-7 Tomography – 2013 Status Report. 10.13140/RG.2.1.1732.4884.

S. Gürbüz - ECNS2023

Flanges and insulators machined in our mechanical workshop

Timepix3 ASIC

- Charge sensitive pixel in 130 nm CMOS technology
- Quad Timepix3 with an active area of 7.9 cm²
- Each ASIC: 256×256 pixels (55 µm pixel pitch) \bullet
- Advantages: \bullet

S. Gürbüz - ECNS2023

- Simultaneous charge and time measurement
- Time resolution: 1.56 ns \bullet
- Zero suppression on chip
- Self-triggered, continuous data-driven readout

https://kt.cern/technologies/timepix3

Timepix3 ASIC

- Charge sensitive pixel in 130 nm CMOS technology
- Quad Timepix3 with an active area of 7.9 cm²
- Each ASIC: 256×256 pixels (55 µm pixel pitch) \bullet
- Advantages:
 - Simultaneous charge and time measurement
 - Time resolution: 1.56 ns
 - Zero suppression on chip
 - Self-triggered, continuous data-driven readout •

Better resolution in time & continuous readout -> Time dependent imaging i.e. neutron radiography

nMCP current status and plans

- All the mechanical components are ready and tested.
- Vacuum level of 10⁻⁷ mbar is achieved.
- High voltage tests are finished.
- Readout electronic designs are ongoing.
- Readout software mostly ready with multi-chip support developments ongoing

Novel neutron detectors

Neutron Micro Channel Plate (nMCP)

S. Gürbüz - ECNS2023

Neutron Time Projection Chamber (nTPC)

GEM based neutron detector

Preliminary study

- 8 GridPixes based on Timepix
- GridPixes at a distance of 3.8 cm
- Spatial resolution $< 100 \,\mu m$

Figure 5: The event display showing exemplarily a collection of neutron conversions on the full Octoboard with Ar:CO₂ 80:20 at 350 V grid voltage. Two of the chips are disabled.

nTPC detector concept

Side wall:

- ~1 µm ¹⁰B layer
- 20 µm scintillator
- Quarz light guide
- Wavelength shifting fibers
- SiPMs for reading out WFSLs
- Reflector

$${}^{10}\text{B} + \text{n} \rightarrow {}^{7}\text{Li} + \alpha + 2.79 \text{ MeV} (6\%)$$

$${}^{10}\text{B} + \text{n} \rightarrow {}^{7}\text{Li}^* + \alpha + 2.31 \text{ MeV} (94\%)$$

18

nTPC detector concept

Mechanical Construction

- Detector is designed and built
- Field cage is ready
- Active area 10cm x 10cm

19

nTPC detector concept

Trigger

- SiPM feeding the Trigger Board
- GridPix readout

S. Gürbüz - ECNS2023

GridPix

- Invented and developed by Nikhef and University of Twente
- Used in CAST (up to seven Timepix), proposed for ILD TPC (ILC), EIC TPC and IAXO with Timepix3.

nTPC current status and plans

- Spatial resolution $< 100 \ \mu m$ is aimed for.
- Cosmic muon tests proves very low track distortion close to the field cage
- Currently: Implementing boron layers.
- Plan to increase the number of the layers for better neutron detection efficiency.

Novel neutron detectors

Neutron Micro Channel Plate (nMCP) Neutron Time

S. Gürbüz - ECNS2023

Neutron Time Projection Chamber (nTPC)

GEM based neutron detector

GEM based neutron detector concept

CASCADE detector: PhD thesis M. Köhli

- Similar to the CASCADE detector used at RESEDA/MIRA instrument (MIEZE) at the FRM II
- Our detector:
 - Independent layers, each with own cathode, coating and readout
 - Thin BC_4 coating \Longrightarrow Many layers needed
 - Increase the number of independent layers

nGEM current status and plans

- A first test layer is being assembled and can be equipped with readout electronics
- Active area: 10×10 cm² and plan to upgrade to 30×30 cm² in future
- Main challenge: significantly large number of electronic channels
- VMM3a-based version of the Scalable Readout System (SRS) of the RD51 collaboration
- PhD position available

M. Lupberger et al. "Implementation of the VMM ASIC in the Scalable Readout System" NIMA 903 (2018) 91-98

25

Detectors	Readout Electronics	Active Area	Expected resolution	Benefits	Challenges	Possible Fields of Applications
	Timepix3 + SRS	2.8cm x 2.8cm	O(10 µm)	High position and time resolution	Vacuum requirements	Neutron imaging and radiography
	GridPix + SRS	10cm x 10cm	O(10-100 µm)	Good position and time resolution	Trigger setup	Neutron scattering experiments
	VMM3a + SRS	10cm x 10cm (30cm x 30cm)	O(100 µm)	High Rate (Large Area)	Large number of electronic channels	Neutron scattering experiments

Summary

FTD

FTD

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Looking forward for future collaborations!

S. Gürbüz - ECNS2023

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

แต่ เ ดเจตแต่แล้