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Abstract. Here we focus on the high-Q small-angle neutron scattering where we observed deviations from an
ideal power law Q−2. From theory, this deviation ∆ arises from the critical correlation-function exponent ηd in
d dimensions. The investigated systems were 3-methyl pyridine/D2O without and with antagonistitc salt. They
display the critical behavior of a 3d and 2d Ising system, respectively. In the first case, the value of ∆ matches
the ideal value η3 well, but in the latter case the value of ∆ is affected by the two confined dimensions and the
third dimension.

1 Introduction

We have studied the critical dynamics of the system 3-
methyl pyridine (3MP) / D2O without and with antago-
nistic salt [1]. We found a 3d- and 2d-Ising behavior in
the static structural measurements (also firstly found in
[2, 3]) and a characteristic critical behavior for the dynam-
ics [1]. At large length scales the hydrodynamic diffusion
and at small length scales the critical diffusion was ob-
served. While at large length scales whole domains are
diffusing, at small length scales an exchange between do-
mains occurs. The two behaviors have a footprint of a dy-
namic critical exponent z = 0.063 and virtually 0, respec-
tively. More important is the difference in the measured
bare viscosities between the 3d and 2d cases that also af-
fects the amplitudes for critical dynamics. The 2d confined
liquid displays the well-known lubrication effect that goes
in hand with the lower bare viscosities.

The understanding of the confinement is based mainly
on the theory of Onuki [4–6]. A sketch of the situation
is displayed in Fig. 1. The charges mainly form layers
and the different ions are found in the domains of 3MP
and D2O. They also serve as wavefronts for the charge
density waves and are responsible for the 2d confinement
of 3MP/D2O. The solvation effect described by Onuki
means that a rather sharp boundary between 3MP and
D2O domains at this interface leads to strong enrichments,
whereas in the other directions the transitions between do-
mains are rather soft. On the other hand, the system with-
out salt is assumed to be a rather ideal 3d Ising system.
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Figure 1. A sketch of the arrangement of the domains of 3MP
and D2O and the ions of the antagonistic salt. The charges are
aligned in planes throughout the sample and serve as wavefronts
of the charge density waves. The solvation effect is exaggerated
by the blue and orange colors (water and 3MP) in terms of a fast
decay towards mixing indicated by the light brown color.

By evaluating the high-Q small-angle scattering we
look at the phase boundaries just with an orientational av-
erage. We first evaluate the asymptotic power laws of the
small-angle scattering and then discuss the obtained expo-
nents. Then we summarize and discuss the findings in the
context of existing theories.

2 Theory

The classical theory for critical fluctuations in three di-
mensions is the Ornstein-Zernike theory [7–9], which
yields a very simple formula for the scattering, i.e., the



Table 1. Summary of the critical exponent ηd in d dimensions.

dimensionality d 3 2 1
ηd 0.033 1

4
1
2

citation [10] [11] [12]

correlation function in reciprocal space:

S (Q) =
S (Q = 0)
1 + ξ2Q2 (1)

The real space correlation function then is obtained by a
Fourier transform after:

G(r) =
1

4πρR2

exp(−r/ξ)
r

(2)

Here ρ is the density, and R2 is the second moment of
the direct correlation function C(r) [7]. This approach is
widely used and works well for small Q when only the cor-
relation length is extracted from scattering experiments.
However, at large Q, there could be deviations from this
ideal behavior as Fisher pointed out [7]. He generalized
the real space correlation function by including a correc-
tion with the critical exponent ηd. The real-space correla-
tion function then reads:

G(r) ∼
exp(−r/ξ)

rd−2+ηd
(3)

The general case for d dimensions is covered here. Of
course also ηd depends on the number of dimensions. A
list of values for ηd can be found in Table 1. We tabulate
the classical values that have been established for 3 to 1
dimensions [10–12]. They compare quite well with the
values obtained from a Renormalization-Group expansion
that depends on ϵ = (4 − d) according to ηd = 0.050ϵ2

[13]. Fisher then proposed a simple corrected formula for
the scattering function in three dimensions that reads [7]:

S (Q) =
S (Q = 0)(

1 + ξ2Q2)1−η3/2
(4)

Similarly, one could write a scattering function for two
dimensions (that is exact for η2 = 0):

S (Q) =
S (Q = 0)(√

1 + ξ2Q2
)1−η2

(5)

One has to be cautious with eqs. 4 and 5 because they give
the impression to be exact over the entire Q-range. At
small Q, the corrections of ηd are small in the sense that
they are nearly invisible (an analytic analysis is presented
in the Appendix). At large Q, the asymptotic scaling is
correct and then reflects the low-r dependency of eq. 3.
However, the prefactor might change and is then different
from the low-Q behavior. The medium Q-range is actu-
ally not very well known, and usually needs more delicate
discussion. This overall mismatch is more pronounced the
bigger the exponent ηd is.

For completeness, we summarize the scattering law
that was applied to the 3MP/D2O system with antagonistic

salt. The ions were taken into account and one arrives at
[2]:

S (Q) =
S (Q = 0)

1 +
{
1 − κ2/

(
1 + λ2

DQ2
)}
· ξ2Q2

(6)

This function was derived from the real-space correlation
function of Onuki [4, 5]. It employs the Debye length
λD = 39.25Å as a fixed parameter, and the parameter κ.
When κ < 1 the system is more like a two-component
system, and κ > 1 includes the amphiphilicity of the an-
tagonistic salt with a preferred wavelength of the charge
density waves (see [2]). For the current manuscript, we
are only interested in the asymptotic Q−2 scattering that
starts at Q > 10−3Å−1 where the correlation length ξ is
determined and further on might show deviations from the
ideal Q−2 behavior.

3 SANS data evaluation at high Q

The experiments have been described in the main paper
[1]. We just mention that the small-angle neutron scatter-
ing (SANS) data have been collected at the Hanaro reac-
tor in the Republic of Korea. Examples for the 3MP/D2O
mixtures are displayed in Fig. 2. While at small Q we can
extract the critical behavior, we now focus on the large-
Q scattering. We applied the following behavior for the
macroscopic cross section (i.e., the calibrated intensity) as
a function of the scattering vector Q:

dΣ
dΩ

(Q) =
A

Q2−∆ + bbackground (7)

The amplitude A was kept as a free parameter and was
not connected to the forward scattering. The exponent ∆
describes the difference from the ideal scattering law; and
bbackground describes the incoherent background (also a free
parameter). In the following we focus on the exponent ∆

Figure 2. The macroscopic cross section (with background sub-
tracted) as a function of the scattering angle Q for the system
3MP/D2O (3d Ising system) and 3MP/D2O with antagonistic salt
(2d Ising system, multiplied by 10). The solid symbols indicate
a temperature of 20◦C and the open symbols the highest tem-
perature of 36◦C and 40◦C, respectively. The asymptotic high-Q
scattering is fitted at Q > 0.104Å−1 (red lines).



only as the deviation from the ideal behavior. We applied
this in the 3d and 2d Ising case in the same manner inde-
pendent on the dimensionality. The parameter ∆ is shown
as a function of temperature in Fig. 3. We can see that the
temperature dependence is quite linear for temperatures
below 32◦C (or 34◦C). These values are also considerably
higher than what would be expected for 3 dimensions, i.e.,
η3. The reason for the decay towards higher temperatures
is the importance of the incoherent background. We can-
not exactly motivate a reason for a linear behavior and
so we consider this as an experimental observation. At
even higher temperatures there are four data points that
are considerably higher than the linear approach. Here, we
consider the values to originate from the intermediate Q-
scattering where extrapolations become difficult. From the
linear extrapolations to T = TC, the critical temperature of
36.9◦C (42.9◦C), we obtain the exponent ∆ = 0.043±0.04
(−0.292 ± 0.026) at the critical temperature where back-
ground issues should be minimal. For the 3d Ising system
our result is consistent with the expectation for the criti-
cal exponent η3, except that the statistical errors are nearly
larger than the value itself. The negative ∆ of the 2d sys-
tem indicates an incorrect estimate of the ideal asymptote.
So we would like to propose the following formula for
high Q:

S (Q) ∼
1(√

1 + ξ2Q2
)1−η2

·

∣∣∣∣∣ sin(QD)
QD

∣∣∣∣∣2−η1

(8)

This reflects the critical behavior in the 2 dimensions be-
tween the charge density wave fronts (first term), and the
sharply defined domains in the third dimension. We also
assume a criticality in the direction of the third dimension
using η1. The factorization of two formfactors (critical
fluctuations in two dimensions, i.e. eq. 5, and a compact
object in the third dimension) does either hold for a sepa-
ration of length scales [14] or for large polydispersities as
in our case. Due to the polydispersity of the domian sizes
D in the third dimension, we can replace the oscillatory
part sin2(QD) by 1

2 [15]. So, we would correct the original
∆ into:

∆corr = 3 − 2 + ∆ = 0.708 ± 0.026 ≈ η2 + η1 =
3
4

(9)

For the values of ηd we refer to Table 1. So, we can state
that in the high-Q behavior a strong influence of the one di-
mension along the propagation of the charge density waves
is visible. The contribution of η1 is stronger than from
the other two dimensions in the lateral directions. This
is surprising because the criticality of the structural static
measurements (at low Q) and the critical dynamics do not
display any influence of this separated third dimension.
We argued [1] that the finite viscosity that applies for the
two lateral dimensions manages to avoid the third dimen-
sion for shorter times (when one could speculate about the
Pomeau divergence [16]) but at later stages the molecules
enter the third dimension when the charge density waves
come into play. In the experiments with strong contrast
between 3MP and D2O the whole influence of the charge
density waves appears rather low. So it is even more inter-

Figure 3. The deviation of the exponent from the ideal value 2
arising from the high-Q SANS power law scattering. This de-
viation ∆ is plotted as a function of temperature. From smaller
temperatures towards higher temperatures the trend seems to be
linear and then suddenly breaks off to higher values (in brackets).
The limit of the linear trend at the critical temperature TC is de-
termined to be compared to the theoretical exponents ηd.

esting that the third dimension also comes into play at the
high-Q static scattering.

The one-dimensional Ising criticality is a quite inter-
esting subject. For instance many critical exponents seem
to diverge when approaching the dimensionality one [17]
(and references herein). For instance the critical exponent
ν goes with ν = ϵ−1 − 1

2 +
1
2 ϵ + O(ϵ2) with ϵ being the

difference to the ideal one-dimensional case [18]. Thus it
is surprising that the exponent η1 stays finite. A more de-
tailed study of our system would possibly give new insight
about other critical exponents in one dimension.

4 Summary

We analyzed the high-Q SANS patterns of 3MP/D2O mix-
tures without and with antagonistic salt. Here, we deter-
mined the effective exponent from the scattering data that
deviates from the ideal exponent of 2. The deviation of
this exponent to the ideal case of 2 was then plotted as a
function of temperature. We observed a linear behavior
at lower temperatures while at elevated temperatures the
medium Q-range behavior does not match anymore. The
exponent was then extrapolated towards the critical tem-
perature TC. These values were then compared to the the-
oretical values of the exponent ηd. For the 3d Ising case
the extrapolation matches the ideal 3d-case. For the 2d
Ising case we had to derive the ideal power law with an
exponent 3, and the deviation ∆corr is affected by the two
dimensions where the domains are confined to and the last,
third dimension, in which the charge density waves prop-
agate. The last influence is surprising because the charge
density waves seem to be not that dominating in the SANS
patterns.

In the future the alignment of the charge density waves
would be desireable – be it in a shear field or in an electric
or magnetic field. Then, the decomposition of different



Figure 4. The effective exponent ∆ as a function of the parameter
Qξ normalized to the actual exponent ηd (here we assumed the
3-dimensional case, that is the only known analytic and exact
solution given in eq. 10). However, for other dimensionalities
we expect an extremely similar behavior.

terms would be easier and the exponent η1 would appear
isolated.

5 Appendix

From eq. 3 we could derive the scattering function in three
dimensions exactly:

S (Q) ∼
cos (η3 arctan(Qξ)) − sin (η3 arctan(Qξ)) /(Qξ)(

1 + Q2ξ2
)1−η3/2

(10)
The enumerator contains the details about the transition
from small Qξ < 1 to large Qξ > 1. The amplitudes and
effective exponents (or slopes) change between the two
cases. The effective exponent ∆ at a specific Qξ normal-
ized to the actual exponent ηd is displayed in Fig. 4. It
decays from a maximum at small Qξ towards the expected
ratio unity at large Qξ. This also means that the intensities
(or the effective amplitude) at small Qξ are smaller and a
faster decay towards higher Qξ is observed (most curves
in Fig. 2 stay below the high-Q power law, and only for
the 2d-Ising case at 40◦C the deviation is reversed - pos-
sibly due to the charge density waves, see eq. 6). Thus
we believe that the enumerator of eq. 10 might be seen as
a general switching function between the two Q-regions

also for other dimensionalities. However, for different di-
mensions the exact expressions are not analytic anymore.
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