
Quasi Elastic Neutron Scattering model library

Céline Durniak1,∗, Miguel Angel González2,, Anders Markvardsen3,, Sanghamitra Mukhopadhyay3,, Franz Lang3,, and
Thomas Holm Rod1

1European Spallation Source ERIC, Ole Maaløes Vej 3, DK-2200 Copenhagen, Denmark
2Institut Laue Langevin, 38042 Grenoble, France
3ISIS Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Oxford, UK

Abstract. This paper reports on the development of a collection of dynamical models of one-dimensional peak
profile functions used to fit dynamic structure factors S (Q, ~ω) of Quasi Elastic Neutron Scattering (QENS)
data. The objective of this development is to create a maintainable and interoperable Python library with models
reusable in other projects related to the analysis of data from Quasi Elastic Neutron Scattering experiments. The
ambition is that the library also will serve as a platform where scientists can make their models available for
others. We illustrate how the library can be used by newcomers to the field as well as by experts via different
examples. These examples, provided as Jupyter notebooks, show how the QENS models can be integrated in
the whole QENS data processing pipeline.

1 Motivation and significance

Quasi elastic Neutron Scattering (QENS) is a neutron scat-
tering technique to probe displacements in temporal and
spatial scales, typically from pico- to tens of nanosec-
onds and from Ångströms to nanometres, respectively. In
this technique one measures the dynamic structure factor
S (Q, ~ω) around the elastic line with ~ω = 0. Here Q
is the momentum exchange between the neutron and the
investigated sample and ~ω is the energy transfer. The
broadening of the elastic peak can be related to diffu-
sive stochastic motions taking place in the sample, includ-
ing translational diffusion (both unconstrained long-range
translations and confined translation), molecular reorien-
tations, localised motions (e.g., methyl rotations), etc. 1

Correspondingly, QENS finds applications in various sci-
entific domains, such as biology (e.g., to explore the dy-
namics of proteins) [5, 6], soft-matter (e.g., to investigate
different relaxation modes in polymers) [7, 8] or materi-
als science (e.g., to probe H-diffusion in hydrogen storage
materials) [9], among others. Each type of motion is char-
acterised by a specific Q-dependence of the intensity and
line-width of the quasi elastic signal for a given Q, which
can be represented by an analytical model. Therefore, a
large series of analytical models corresponding to the dif-
ferent types of motions mentioned above exist and can be
used to fit the experimental data in order to extract the rel-
evant physical parameters (e.g., self-diffusion constants,
residence times, jump lengths, etc.) from the QENS spec-
tra [1].

The QENS library makes a range of these mathemat-
ical models freely available to practitioners of QENS and

∗e-mail: celine.durniak@ess.eu
1Refer to [1–4] for more details about the technique.

developers of QENS analysis software in a format that
makes them inter-operable and reusable. As an open-
source library, the implementations can be scrutinised and
validated by peers, and scientists are encouraged to add
their own models to make them available for the QENS
community at large.

The QENS library at its core provides Python models
of mainly one-dimensional (1D) line profiles to fit exper-
imental or simulated S (Q, ~ω ≈ 0) data. This work was
part of SINE2020 Work Package 10 on Data Treatment
[10] to develop a comprehensive library of dynamical
models in order to increase interoperability and reusabil-
ity, for instance for rapid prototyping. The library provides
different building blocks that users can combine, convo-
lute and plug into different frameworks for visualizing or
fitting.

Our approach is similar to that implemented by the
SasView [11] developer community for small angle scat-
tering with its SasView Marketplace [12].

The library is written in Python and depends on stan-
dard scientific Python modules (i.e., scipy [13] and
numpy [14]). It is installed using the package installer for
Python, pip.

2 Software description

The library is developed under an open-source license
(BSD 3-Clause) and the source is stored in a GitHub repos-
itory at https://github.com/QENSlibrary/QENSmodels/.
The models are written in Python facilitating integration
with other packages of the large Python eco-system as
well as easy integration in Python based workflows. More-
over, Python is a very popular scripting and programming

https://github.com/QENSlibrary/QENSmodels/

Figure 1. (Colour on-line) Workflow of QENS data processing from raw experimental data to output of fitting.

language in science and the Python interface therefore re-
duces the entry barrier for the many scientists already fa-
miliar with Python.

The library comes with examples of how it can be used
in practise and in conjunction with existing Python mod-
ules for optimization (fitting), visualization, and for adding
Graphical User Interface (GUI) elements.

Figure 1 shows a typical QENS data processing work-
flow. Data are collected during an experiment and then
corrected (background subtraction, detector efficiency nor-
malisation, absorption and multiple scattering corrections,
etc.) in order to obtain the experimental S (Q, ~ω) for our
sample [3]. The latter is then compared to the relevant
mathematical models and typically some important pa-
rameters characterising the sample dynamics and the mo-
tion geometry are obtained by fitting the model parameters
to the experimental signal. Data collected from multiple
experiments can also be used in this procedure for simul-
taneous or sequential fittings. Different tools exist to deal
with these stages with different levels of coverage of the
whole workflow.

For example, MantidWorkbench [15] can deal with
data reduction, fitting and plotting.

If we focus on fitting only, the available tools are more
universal and not restricted to the QENS technique. There
are, for example, bumps [16], lmfit [17] or scipy [13].
Therefore, in the present library we provide different mod-
els, (corresponding to cell ‘Select models(s)‘ in Fig. 1)
that can be combined and plugged in different frameworks.
The following subsections detail the architecture of the li-
brary and its main functionalities.

2.1 Software Architecture

Figure 2 shows the structure of the repository. Each file
in the QENSmodels folder contains the implementation of
exactly one model in the form of a Python 3 function that
returns S (Q, ~ω). For more complicated models, func-
tions returning the Q-dependence of the half-width at half
maximum (HWHM), the elastic incoherent structure fac-
tor (EISF) and the quasi-elastic incoherent structure fac-
tors (QISF) for the 1D peak are also provided. We refer to
[8, 18] for definitions of these terms.

QENSmodels repository
QENSmodels/ ...
Python module files with QENS

models.
docs/
examples/ ...
Jupyter notebooks.

data/ ...
Reference datafiles used in

Jupyter notebooks.
using_mantid/

tests/ ... Python scripts of unit tests on

the QENS models.
tools ... Jupyter notebooks and scripts

to run unit tests and provide

additional information on QENS

models.
CONTRIBUTING.rst
DISCLAIMER.rst
LICENSE.txt
MANIFEST.in
README.rst
pyproject.toml

Figure 2. Structure of QENS models repository.

Usability in a scripting environment, such as Jupyter,
is facilitated by providing rich documentation through so-
called documentation strings using the Sphinx [19] stan-
dard including so-called doctest [20]. By adhering to the
Sphinx standard, documentation pages can be automati-
cally generated and updated from the code itself. More-
over, to help the interested user and to lower the entry bar-
rier, examples using Jupyter notebooks and Python scripts
are provided as well as instructions for scientists wish-
ing to contribute their own models to the library. On-
line documentation is also available on readthedocs at
https://qensmodels.readthedocs.io/.

Code quality and maintainability is facilitated by us-
ing git for version control and by implementing unit tests,

https://qensmodels.readthedocs.io/

Figure 3. (Colour on-line) Diagram showing the tools provided in the QENSmodels library to help users with different levels of
expertise in QENS and in programming.

including the aforementioned doctests,2, which are used
for continuous integration using GiHub Actions. This ap-
proach to software development is in alignment with the
guidelines outlined in [21].

2.2 Software Functionalities

Figure 3 shows the options available for using the library.
In order to give an idea of what can be done with the li-
brary without any installation, the Jupyter notebooks [22]
are available through Binder [23]. Users only have to click
on the link to be able to run the notebooks and check if the
library can answer their needs.

On the other hand, for users only interested in the mod-
els, for example, to add them to their fitting pipelines, the
installation of the library requires only a command line. In
addition, they will have to perform all steps as listed in the
third column of Figure 3 in order to use the model for their
cases.

As mentioned in the previous section, examples are
provided as Jupyter notebooks. They use a few QENS
models and a few fitting engines, like lmfit, scipy, or
bumps. The notebooks and modules required to make
them run can be installed by following the guidelines on
the github pages [24]. Note that the minimizers used in
these notebooks were only to illustrate the specific syn-
taxes of the fitting engines and not because they were the
most optimal engines for the investigated cases. Details
about comparison of minimizers can be found at [25].

Physical units used by the models’ parameters and
variables are specified at the beginning of the Jupyter note-
books. A notebook, Convert_Units.ipynb is also pro-
vided to convert between different physical units in case
the reference user’s data are expressed in different units
than the standards chosen for the QENS library.

2A unit test checks that a single component operates in the right way.
It helps to isolate where something in the code is broken. Doctest pro-
vides a testing framework using code examples for documenting and test-
ing Python code.

3 Illustrative Examples

3.1 Toy examples in the library

As tutorials, Jupyter notebooks [22] are provided showing
how to (i) build a model using different functions from the
QENS library, (ii) choose a fitting engine, (iii) define the
settings and run the fit, (iv) extract visual and quantitative
information from the outputs.

Since the syntax to build the fitting model, ap-
ply constrains and set the initial guesses depends on
the chosen fitting engine, different minimizers have
been used in the notebooks: scipy [13], bumps [16],
lmfit [17]. For an easier identification, the note-
books have been named following this convention: "[fit-
ting engine]_[name of QENSmodels]_fit.ipynb", e.g.,
"scipy_lorentzian_fit.ipynb".

Reference data used in the examples are either gen-
erated in the dedicated Jupyter notebook or stored in one
of the files in the data sub-folder of the repository. We
provide these reference data in binary (hdf5) and ascii for-
mats. The resolution function is either a Gaussian profile
or reduced data from a Vanadium run. And the convo-
lution with the sample data is done using methods from
numpy [14] or lmfit [17].

We are now going to detail one of these notebooks,
bumps_Brownian_Diff_fit.ipynb. Figure 4 details its
table of contents. After a short introduction describing the
objective of the notebook, we specify the physical units
of the refined parameters and import the required Python
libraries as well as the reference data for the sample and
resolution function. Figure 5 shows the evolution of these
functions for different Q values. The convolution between
the sample and the resolution functions is done using a
method from numpy [14].

Brownian Translational diffusion *
Resolution with bumps

Introduction
Physical units

Import libraries
Setting of fitting
Load reference data
Display units of input data
Create fitting model
Display initial configuration
Choice of minimizers for bumps
Setting for running bumps

Running the fit
Showing the results
Display final configuration

Figure 4. Table of contents of one of the Jupyter notebooks avail-
able in the library: bumps_Brownian_Diff_fit.ipynb

Figure 5. (Colour on-line) Plot of the reference data used in
bumps_Brownian_Diff_fit.ipynb.

The fitting model is expressed as:

S (Q, ω) = R(Q, ~ω) ~
[
scale
π

DQ2

(~ω − center)2 + (DQ2)2

]
,

where scale and center are the scale factor and center of
the Lorentzian function describing the diffusion, of half-
width at half-maximum equal to DQ2, where D is the self-
diffusion coefficient and Q the momentum transfer. List-
ing 1 shows how the fitting model was created following
the syntax required by the fitting engine, bumps. In order
to help less Python savvy users, several GUI widgets are
provided in the notebooks, for example, to choose the min-
imizer, the number of iterations or for interactive plots as
shown in Figure 6. After running the fit, the values and er-
rors of the refined parameters and the fit quality are printed
and a plot of the fitted model in comparison with the refer-
ence data is shown for the value of Q selected by the user
via a widget.

Listing 1. Code snippet showing how to create a fitting model
using ‘bumps‘ and the QENS library
import numpy as np
from QENSmodels import \

s q w B r o w n i a n T r a n s l a t i o n a l D i f f u s i o n
import bumps . names as bmp
F i t t i n g model
def model_convol (x , q , s c a l e =1 , c e n t e r =0 , D=1 ,
r e s o l u t i o n =None) :

model = s q w B r o w n i a n T r a n s l a t i o n a l D i f f u s i o n (x , q , s c a l e ,
c e n t e r , D)

re turn np . c o n v o l v e (model ,
r e s o l u t i o n / r e s o l u t i o n . sum () ,
mode= ’ same ’)

F i t
m o d e l _ a l l _ q s = []

f o r i in range (l e n (q)) :
Bumps f i t t i n g model
model_q = bmp . Curve (

model_convol ,
hw ,
sqw [: , i] ,
e r r [: , i] ,
name= f ’ q_ {q [i] : . 2 f } ’ ,
q=q [i] ,
s c a l e =1000 ,
c e n t e r =0 .0 ,
D=0 .1 ,
r e s o l u t i o n = r e s [: , i])

model_q . s c a l e . range (0 , 1 e5)
model_q . c e n t e r . range (−0 .1 , 0 . 1)
model_q .D. range (1 e−12 , 1)
Q− i n d e p e n d e n t p a r a m e t e r s
i f i == 0 :

D_q = model_q .D
e l s e :

model_q .D = D_q
m o d e l _ a l l _ q s . append (model_q)

problem = bmp . F i t P r o b l e m (m o d e l _ a l l _ q s)

Figure 6. (Colour on-line) Widget to select the index in the list
of available Q-values to plot the fitted model in comparison with
the reference data as well as the residual. Here the configuration
corresponding to Q = 2 Å is shown.

In addition to these notebooks, we also provide in-
structions to make the library importable in MantidWork-
bench [15] as well as a Python script using one of the

Figure 7. (Colour on-line) Graphical User Interface of MantidWorkbench [26] showing the use of the Python script
mantid_BrownianDiff_fit.py provided in the library. The Python script is displayed in the editor. After its execution, workspaces,
i.e., Mantid data structures, are available for further operations in the Graphical User Interface (left-hand side column) and a separate
window displays the fitting result for the 4 Q-values considered in this example.

models to fit data and plot and display the output in Man-
tidWorkbench (see Figure 7). Reference [27] details the
QENS features available in this framework.

3.2 Benchmarking with experimental data

One of the notebooks,
lmfit_TOFTOF_delta_lorentz.ipynb uses reduced
data presented in [28].

In this publication, the authors used QENS, among
other techniques, to investigate the microscopic details of
the proton motions in two proton conducting, acceptor-
doped, perovskites. The samples were measured at the
time-of-flight spectrometer TOFTOF at MLZ at different
temperatures using an incident wavelength of 2.5 Å. Nine
"Q-cuts" were retained in the analysis. The reduced data
files for one of the investigated samples BaZr0.8In0.2O3H0.2
at several temperatures have been provided by D. Noferini.
The reduced experimental data were fitted using the fol-

lowing model:

S meas(Q, ~ω) = {S (Q, ~ω)[1 + n(~ω)]~ωβ} ~ R(Q, ~ω),

where S (Q, ~ω) = aD(Q)δ(~ω) + aL(Q)L(Q, ~ω) +

bkg(Q), n(~ω) = [exp(~ωkBT) − 1]−1 is the Bose factor, and
β = (kBT)−1 is the reciprocal of the thermodynamic tem-
perature. δ(~ω) and L(Q, ~ω) are a Dirac and a Lorentzian
peaks, respectively. R(Q, ~ω) is the resolution function
(spectrum of a vanadium standard). bkg(Q) is the constant
background, only Q-dependent and ~ is the convolution
symbol.

The Jupyter notebook describes how to load the re-
duced data, build the model using the QENS library, select
the minimizer and the range of Q-values to consider, run
batch fitting over successive Q-values at different temper-
atures and extract, store and display results from the fit.
Figure 8 shows the comparison between an experimental
profile (bullet points with errorbars) and the fitted model
(solid line) for Q = 2.3 Å at a temperature of T = 540K
together with the initial model (dashed curve). The good
agreement between the final fit and the experimental data
is clearly evident. Interested readers are encouraged to
consult ref. [28] for further details.

This example could be further extended by providing
loading of reduced data from different instruments or dif-
ferent data formats to, for example, easily compare the re-
sults collected during experiments at different institutes.

Figure 8. (Colour on-line) Experimental S (Q, ~ω) (bullet points
with errorbars) from [28] and model with initial guesses (dashed
orange line) and fitting outputs (solid red line).

4 Impact

The QENS library helps researchers and scientists by pro-
viding a list of 1D functions to fit QENS data making the
analysis more FAIR, i.e., Findable Accessible Interopera-
ble Reusable [29] by providing a public reference to fitting
models allowing other researchers to reproduce the analy-
sis.

The dynamics observed in QENS experiments are
mainly related to the complexities of the samples studied.
But collected signals can also contain the signature of the
instrument and of the sample environment, which are get-
ting more sophisticated. The combination of both factors
may render the extraction and modelling of the experimen-
tal S (Q, ~ω) challenging. But this process can be made
easier thanks to the flexibility of customising fitting mod-
els with the QENS library and different instrument resolu-
tion functions.

The library can be imported in different frameworks
as illustrated in Section 3 with MantidWorkbench. This
example shows how to use Python scripts. But the library
could also be used in Graphical User Interfaces, like the
QENS data analysis interface of Mantid described in [27].

Given that the library is installed using pip, it can be
included in an automated data processing pipeline (reduc-
tion and analysis) or, for example, in a Machine Learn-
ing workflow, to build the optimal fitting model with ease,
which increases the reach and usability of our develop-
ment.

5 Conclusions

We have developed a Python package called QENSmod-
els, that provides dynamic models of 1D line profiles to
fit QENS experimental or simulated data. In order to il-
lustrate how to hook these models to the whole data pro-
cessing pipeline to newcomers and experts, we provide
Python scripts and Jupyter notebooks using different data
and fitting engines. In the future, we plan to integrate
more models and other examples using experimental data
and other fitting engines. Scientists are also encouraged to
contribute implementations of their work with additional
models or examples.

The authors wish to thank Daria Noferini and her co-authors
for providing experimental data used for testing some of the mod-
els.

References

[1] M. Bée, Quasielastic Neutron Scattering, Principles
and Applications in Solid State Chemistry, Biology
and Materials Science (Taylor & Francis, 1988),
ISBN 9780852743713

[2] R. Hempelmann, Quasielastic Neutron Scattering
and Solid State Diffusion, Oxford Neutron Scattering
in C (Clarendon Press, 2000), ISBN 9780198517436

[3] M. Telling, A Practical Guide to Quasi-elastic Neu-
tron Scattering (Royal Society of Chemistry, 2020),
ISBN 9781788019262

[4] J.P. Embs, F. Juranyi, R. Hempelmann, Zeitschrift für
Physikalische Chemie 224, 5 (2010)

[5] R.E. Lechner, S. Longeville, Quasielastic Neutron
Scattering in Biology, Part II: Applications (Springer
Berlin Heidelberg, Berlin, Heidelberg, 2006), pp.
355–397, ISBN 978-3-540-29111-4, https://doi.
org/10.1007/3-540-29111-3_16

[6] D. Vural, X. Hu, B. Lindner, N. Jain, Y. Miao,
X. Cheng, Z. Liu, L. Hong, J.C. Smith, Biochimica
et Biophysica Acta (BBA) - General Subjects 1861,
3638 (2017), science for Life – Recent Advances in
Biochemical and Biophysical Methods

[7] V.G. Sakai, A. Arbe, Current Opinion in Colloid &
Interface Science 14, 381 (2009)

[8] Q. Berrod, K. Lagrené, J. Ollivier, J.M. Zanotti, EPJ
Web of Conferences 188, 05001 (2018)

[9] M. Karlsson, Phys. Chem. Chem. Phys. 17, 26
(2015)

[10] SINE2020 homepage, https://www.sine2020.eu
[11] sasview webpage, www.sasview.org
[12] sasview marketplace webpage, http:

//marketplace.sasview.org/

[13] P. Virtanen, R. Gommers, T.E. Oliphant, M. Haber-
land, T. Reddy, D. Cournapeau, E. Burovski, P. Peter-
son, W. Weckesser, J. Bright et al., Nature Methods
17, 261 (2020)

[14] C.R. Harris, K.J. Millman, S.J. van der Walt,
R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser,
J. Taylor, S. Berg, N.J. Smith et al., Nature 585, 357
(2020)

[15] O. Arnold, J. Bilheux, J. Borreguero, A. Buts,
S. Campbell, L. Chapon, M. Doucet, N. Draper, R.F.
Leal, M. Gigg et al., Nuclear Instruments and Meth-
ods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment
764, 156 (2014)

[16] P. Kienzle, J. Krycka, N. Patel, I. Sahin, Bumps (ver-
sion 0.8.0) [computer software]

[17] M. Newville, T. Stensitzki, D.B. Allen, A. Ingargi-
ola, Lmfit: Non-linear least-square minimization and

curve-fitting for python (2014), https://doi.org/
10.5281/zenodo.11813

[18] T. Matsuo, J. Peters, Life 12, 1259 (2022)
[19] G. Brandl, URL http://sphinx-doc.org/sphinx.pdf

(2021)
[20] doctest documentation, https://docs.python.

org/3/library/doctest.html

[21] J. Wuttke, S. Cottrell, M. Gonzalez, A. Kaestner,
A. Markvardsen, T. Rod, P. Rozyczko, G. Vardanyan,
Journal of Neutron Research 24, 1 (2022)

[22] Jupyter webpage, https://jupyter.org/
[23] Project Jupyter, Matthias Bussonnier, Jessica Forde,

Jeremy Freeman, Brian Granger, Tim Head, Chris
Holdgraf, Kyle Kelley, Gladys Nalvarte, Andrew Os-
heroff et al., Binder 2.0 - Reproducible, interactive,
sharable environments for science at scale, in Pro-
ceedings of the 17th Python in Science Conference,
edited by Fatih Akici, David Lippa, Dillon Nieder-
hut, M. Pacer (2018), pp. 113 – 120

[24] Using the jupyter notebooks in a virtual envi-
ronment, https://github.com/QENSlibrary/
QENSmodels/tree/main/docs/examples#
using-the-jupyter-notebooks-in-a-virtual-environment

[25] Mantid documentation: Comparing minimizers,
https://docs.mantidproject.org/v3.8.0/
concepts/FittingMinimizers.html

[26] Mantid 6.5.0: Manipulation and analysis toolkit for
instrument data.; mantid project. (2022)

[27] S. Mukhopadhyay, B. Hewer, S. Howells, A. Mark-
vardsen, Physica B: Condensed Matter 563, 41
(2019)

[28] D. Noferini, M.M. Koza, S.M.H. Rahman, Z. Even-
son, G.J. Nilsen, S. Eriksson, A.R. Wildes, M. Karls-
son, Phys. Chem. Chem. Phys. 20, 13697 (2018)

[29] M.D. Wilkinson, M. Dumontier, I.J. Aalbersberg,
G. Appleton, M. Axton, A. Baak, N. Blomberg, J.W.
Boiten, L.B. da Silva Santos, P.E. Bourne et al., Sci-
entific Data 3, 160018 (2016)

https://doi.org/10.1007/3-540-29111-3_16
https://doi.org/10.1007/3-540-29111-3_16
https://www.sine2020.eu
www.sasview.org
http://marketplace.sasview.org/
http://marketplace.sasview.org/
https://doi.org/10.5281/zenodo.11813
https://doi.org/10.5281/zenodo.11813
https://docs.python.org/3/library/doctest.html
https://docs.python.org/3/library/doctest.html
https://jupyter.org/
https://github.com/QENSlibrary/QENSmodels/tree/main/docs/examples#using-the-jupyter-notebooks-in-a-virtual-environment
https://github.com/QENSlibrary/QENSmodels/tree/main/docs/examples#using-the-jupyter-notebooks-in-a-virtual-environment
https://github.com/QENSlibrary/QENSmodels/tree/main/docs/examples#using-the-jupyter-notebooks-in-a-virtual-environment
https://docs.mantidproject.org/v3.8.0/concepts/FittingMinimizers.html
https://docs.mantidproject.org/v3.8.0/concepts/FittingMinimizers.html

	Motivation and significance
	Software description
	Software Architecture
	Software Functionalities

	Illustrative Examples
	Toy examples in the library
	Benchmarking with experimental data

	Impact
	Conclusions

