
BornAgain, software for GISAS and reflectometry: releases 1.17 to 20

Ammar Nejati1, Mikhail Svechnikov1, and Joachim Wuttke1,∗

1Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science at MLZ, Lichtenbergstraße 1, 85748 Garching, Germany

Abstract. BornAgain is a free and open source cross-platform software for simulating and fitting grazing-
incidence small-angle scattering, off-specular scattering, and reflectometry. An authorative description as per
release 1.16 of 2019 has been published in J. Appl. Cryst. 53, 262–276 (2020). This report explains the
incremental changes from releases 1.17 to 20.

1 Introduction

The research software BornAgain was originally con-
ceived for simulating and fitting neutron and x-ray
grazing-incidence small-angle scattering (GISAS). It can
also be used with off-specular scattering, reflectometry,
and regular small-angle scattering. BornAgain is a cross-
platform software with active support for Linux, Windows,
and MacOS. BornAgain is a free and open-source project
under the GNU Public License. Download links and on-
line documentation can be reached from the project home-
page [1]. Source repository and issue tracker are at [2].

The canonical literature reference for BornAgain is the
comprehensive paper in J. Appl. Cryst. [3], based on soft-
ware release 1.16 from 2019. The present report docu-
ments the incremental changes from releases 1.17 to 20.

2 Release history, numbering scheme

Releases 1.17 to 1.19 were published in 2020 and 2021
[4]. We then spent two full years on internal consolidation
before the next release was published in March 2023. At
this point the numbering scheme was changed: The ma-
jor version number “1” was dropped, and the old minor
promoted to major so that 1.19 was followed by version
20.

The change in the numbering scheme expresses our
conviction that BornAgain has become too big for any
comprehensive re-enginering or partial re-writing that
would justify stepping the old major from 1 to 2. Instead,
all future evolution of BornAgain will be through incre-
mental changes in agile development cycles that should
not take longer than a couple of months.

The full version names were actually ternary (1.19.0),
and are now binary (20.0). In either case, the trailing “.0”
expresses the patch level that is incremented only in hotfix
releases, such as 20.1 from May 2023.

∗e-mail: j.wuttke@fz-juelich.de

3 Source repository

The source repository [2], including the issue tracker,
has been relocated from GitHub to Jugit, our institution’s
instance of the open-source software GitLab. External
contributors can log in through a federated service [5],
then self-register. Contributors from institutions that are
not participating in the federation can login using their
GitHub, Google, or ORCID account [6].

4 Binaries for different Python versions

We provide all necessary configuration scripts and expla-
nations for building BornAgain from source. Most users,
however, prefer binary installers, which we provide at [7]
for four platforms (Linux and Windows on x64 architec-
ture, Mac on x64 and arm). For Linux, as an alternative to
the installer shell script, there exist externally maintained
Debian packages [8].

For Python scripting to work, the minor version of
the user’s Python engine must be the same as was used
in building the BornAgain binaries. In the past, version
conflicts often prevented users from getting started with
BornAgain scripting. Therefore, starting with release 20,
we now provide binary installers for several Python minor
versions (currently 3.8 to 3.10), and this for each of the
four supported target platforms.

5 Python-only packages (wheels for pip)

For those who but intend to use BornAgain through the
Python API only, release 20 introduced yet another, even
simpler installation method: We packaged a non-GUI vari-
ant of BornAgain as a Python wheel. A wheel [9] is
a zipped archive of Python scripts and object libraries.
In our case these libraries comprise the BornAgain mod-
ules compiled from the C++ sources, including Swig-
generated wrapper code, and all external library Born-
Again depends on.

A wheel has a specially formatted file name that en-
codes software name, software version, Python language



Figure 1. Include relations between code subdirectories concerned with the sample model. Graphical representation generated by
Doxygen. All arrows go downwards: there are no cyclic dependences.

version, Python application binary interface version, tar-
get operating system and target processor architecture. So
we prepared 12 wheels, for the four platforms and the three
Python minor versions mentioned above.

We uploaded them to the standard Python package
repository, for historical reasons misnomed “index”: the
Python Package Index (PyPI). Our wheels can be either
downloaded through the “Download files” link at [10], or
they can be automatically retrieved and installed using pip
commands.

6 Internal consolidation

In the years leading to release 1.16, BornAgain has rapidly
grown in scope, but also in complexity. The clarity and el-
egance of the initial architecture was somewhat lost in the
course of unforeseen extensions. New developers found it
increasingly difficult to implement new features, and most
developer time was spent on analyzing how the program
was working. This problem was addressed in releases 1.17
to 20 through refactoring aimed at simplifying and unify-
ing code and data structures.

We reorganized the directory tree that holds over 1500
source files, and resolved cyclic dependence between di-
rectories [11, Sect. 5.4.1] so that include relations now
form a directed graph (Fig. 1). We renamed classes, vari-
ables and functions that had evolved away from their origi-
nal meaning. To facilitate code analysis, functions of same
name in unrelated classes were given distinct names. In
a majority of cases, C++ templates could be replaced by
simpler constructs.

We removed unused code and reverted premature gen-
eralizations. To reduce the depth of call chains, numer-
ous short functions were inlined or merged. Classes only
meant to hold algorithms were dissolved, and the algo-
rithms moved into free functions or under other classes.
New abstractions helped to merge duplicate code.

Three-dimensional vector classes were moved from
BornAgain into a separate library, libheinz [12], which in

the future shall also be used by other projects at Heinz
Maier-Leibnitz Zentrum. Form-factor computations [13]
were also moved to a separate library, libformfactor [14],
so that time-consuming numerical tests could be taken out
of the BornAgain test suite. Regarding test coverage [11,
Sect. 5.8], we removed trivial unit tests, and added func-
tional tests, especially in form of Python scripts which
have dual use as part of the example script collection.

As a result, core code could be reduced by 18 % from
38 kLoC (kilo lines of code) in release 1.16 to 31 kLoC
(including 2 kLoC moved to libheinz and libformfactor)
in release 20, and the GUI code by 13 %, from 60 kLoC to
52 kLoC, all while improving and extending functionality.

7 API changes

The Python Application Programming Interface (API) of
BornAgain mostly consists of class constructor and class
member function calls. Its ergonomy depends on the perti-
nence, expressivity and uniformity of function names and
argument lists. If the principle of least surprise [15, 16] is
well respected the user can work by analogy and develop
an intuition how to use classes and functions. If the API is
inconsistent the user needs to look up each function signa-
ture in the reference.

To edge out inconsistencies and make the API as uni-
form and unsurprising as possible, each release is cur-
rently breaking some user scripts. We are aware that it
is annoying, but under the premise that BornAgain will
have a lifespan of decades it is the right choice to sac-
rifice backward compatibility now for a more consistent
API and a more maintainable code base in the future. All
API changes are listed in the change log [4].

8 GUI, new sample editor

Release 20 brought two important changes to the graphical
user interface (GUI): Full serialization, and a new sample
editor.



Figure 2. Screenshot of the new sample editor GUI widget, featuring a random assembly of uncorrelated pyramids in an otherwise
empty surface layer.

Through serialization, the full state of a GUI session,
including sample and instrument models, can be saved to
and reloaded from a project file. Uses include resuming
work after a break, reverting unsuccessful modifications
of a model, sharing with collaborators, and creating fully
reproducible bug reports.

The next couple of releases will likely break project
file compatibility for certain model components, for the
same reasons as discussed above for the Python API. In the
longer run, however, we intend to ensure backward com-
patibility. For this purpose, each serialized feature carries
a version number.

Up to release 1.19, the GUI had a graphical sample
editor inspired inspired by the LabVIEW way of graph-
ical programming. Users assembled models from com-
ponents by drag and drop. This allowed to visualize the
stack of layers and highlighted the internal hierarchy of
layers, layouts, particles, interference functions and their
modifications. Acclaimed by many novice users, this edi-
tor was aesthetically pleasing and had an almost haptic ap-
peal. However, the block diagrams did not show model pa-
rameters, which could only be modified in a separate wid-
get. Experienced users therefore requested a more com-
pact sample representation.

In response to that, release 20 has a completely new
sample editor, based on expandable tables. Selectable
lists, parameters, their labels and editable fields are orga-
nized as grids inside nested collapsible boxes. This al-
lows both handling layers with arbitrary internal complex-
ity and the direct presentation of exhaustive parameter set
to the user.

9 Documentation

The online documentation, accessible from the project
home page [1], is now versioned: starting with 1.19, the
documentation for each release will indefinitely remain
readable.

Up to 1.19, the main part of the documentation was a
very long tutorial on Python scripting. Usage was mostly
taught by code examples, followed by explanations. In
place of a reference, a documentation of the C++ applica-
tion programming interface (API) was auto-generated by
Doxygen.

The tutorial turned out to be cumbersome to maintain.
Readability suffered from numerous repetitions. The C++
API reference was found inadequate by Python users. For
these reasons, the Python scripting documentation was re-
organized in release 20. It was split into three parts: a short
tutorial, a collection of examples, and a human-written ref-
erence. The new, concise style is inspired by best-practice
examples like the classical Unix man pages or the Qt on-
line documentation, and is guided by the assumption of an
intelligent, active reader who is able to follow links and
draw obvious consequences [11, 16].

The conversion to this new style is a work in progress.
Many pages in the reference section are still in old
teaching-from-example style. They will be converted
piece by piece in the next release cycles, preferably in
conjunction with simplification and unification of the API.
The “Simulation model” section is already fully converted
to the new style and gives an impression how the entire
reference will look like in the future.



We are aware that users of the Python API want a doc-
umentation that is more “pythonic” in style and can be
queried in an interactive session. Any action on this has to
wait until we have decided whether we continue to gener-
ate Python bindings through Swig (which has severe limi-
tations especially for functional programming) or whether
we switch to some alternative technology.

10 Further plans

Our work plan for the next years comprises the following
categories of tasks, in roughly decreasing order of priority:

(1) User support. Questions and suggestions should
preferentially be submitted to the issue tracker at [2] so
that discussions are publicly visible, and will aggregate
into a searchable knowledge base. Confidential requests
can be sent by mail to contact@bornagainproject.org. Our
biennial School and User Meeting, interrupted by the
Covid-19 pandemic, shall be relaunched soon.

(2) Further code consolidation, along with API unifica-
tion and simplification. In the BornAgain core, we are cur-
rently unifying the handling of scans, coordinate axes and
unit conversions. In the sample model, per legacy from
IsGisaxs [17, 18], inter-particle correlations are currently
treated as modifiers of particles. This hierarchy shall be
inverted; particles shall be attached to lattices or other
structural models, which in turn are attached to coherent
surface or bulk domains. In the GUI, we want to reduce
the amount of repetitive (“boilerplate”) code and to fur-
ther simplify some data structures and class hierarchies in
order to facilitate future modifications and enhancements.

(3) Improvement of usability. We need to complete the
online reference, make the example collection more or-
thogonal, and rework parts of the GUI, taking inspiration
from other reflectometry software [19–23]. Developer-
oriented code instrumentation shall be withdrawn from
the published examples. To support different workflows,
we will probably make the GUI multi-window capable so
that users can freely select and arrange the data and model
views they want to access simultaneously. In a related ef-
fort, we need to support simultaneous fits of multiple data
sets, for instance from different measurements of the same
sample.

(4) Acceleratation of computations. Absorption shall
be handled at the level of horizontally averaged sliced lay-
ers, not the level of scattering particles. This will allow us
to return from complex to real valued scattering vectors,
which will substantially accelerate all form factor compu-
tations. Recently obtained series expansions [24] shall be
used for the efficient computation of rotationally averaged
form factors.

(5) Extension of functionality, mostly in response to
user requests. The modelling and computational handling
of instrumental resolution and modelling of mesoparticles
shall be improved, the latter needs to be fully documented.
To make progress on magnetic reflectivity and scattering,
we depend on users proposing theoretical models.

Acknowledgements

We thank Randolf Beerwerth, Ludwig Jäck, Tobias
Knopff, Andrew McCluskey, Gennady Pospelov, Matthias
Puchner and Dmitry Yurov for contributions after release
1.16. We thank Thomas Arnold, Artur Glavic, Andrew
McCluskey, Karolina Mothander, Thomas Holm Rod for
criticism and suggestions. The extension of BornAgain to
reflectometry was partly funded under schedule NIK4#11
as part of the data analysis and modeling work package
to the contribution agreement between the European Spal-
lation Source ERIC and Forschungszentrum Jülich. J.W.
thanks Andreas Meyer and Stéphane Rols for hospitality
at ILL in Grenoble.

References

[1] BornAgain home page, https://bornagainproject.org.
[2] BornAgain source repository, https://jugit.fz-juelich.

de/mlz/bornagain.
[3] G. Pospelov, W. Van Herck, J. Burle, J. M. Car-

mona Loaiza, C. Durniak, J. M. Fisher, M. Ganeva,
D. Yurov and J. Wuttke, J. Appl. Cryst. 53, 262
(2020).

[4] BornAgain change log, https://jugit.fz-juelich.de/
mlz/bornagain/-/blob/main/CHANGELOG.

[5] Helmholtz Authentication and Authorisation Infra-
structure, https://hifis.net/aai.

[6] How to log in to Jugit, https://computing.
mlz-garching.de/tech/jugit-login.

[7] BornAgain download directory, https:
//bornagainproject.org/ext/files.

[8] BornAgain Debian package, https://tracker.debian.
org/pkg/bornagain.

[9] D. Holth, PEP 427 — The Wheel Binary Pack-
age Format 1.0. https://peps.python.org/pep-0427
(2012).

[10] BornAgain without GUI as Python package, https:
//pypi.org/project/BornAgain.

[11] J. Wuttke, S. Cottrell, M. A. Gonzalez, A. Kæst-
ner, A. Markvardsen, T. H. Rod and G. Vardanyan,
J. Neutron Res. 24, 33 (2022).

[12] libheinz, C++ base library of Heinz Maier-Leibnitz
Zentrum, https://jugit.fz-juelich.de/mlz/libheinz.

[13] J. Wuttke, J. Appl. Cryst. 54, 580 (2021).
[14] libformfactor, C++ library for the computation of

scattering form factors, https://jugit.fz-juelich.de/
mlz/libformfactor.

[15] G. James, The Tao of Programming, InfoBooks:
Santa Monica, Calif. (1987).

[16] E. S. Raymond, The Art of Unix Programming,
Addison-Wesley: Boston (2003).

[17] R. Lazzari, J. Appl. Cryst. 35, 406 (2002).
[18] R. Lazzari, IsGISAXS. Version 2.6. http://www.insp.

jussieu.fr/oxydes/IsGISAXS/isgisaxs.htm (2006).
[19] A. R. J. Nelson and S. W. Prescott, J. Appl. Cryst.

52, 193 (2019).
[20] O. V. Penkov, I. A. Kopylets, M. Khadem and T. Qin,

SoftwareX 12, 100528 (2020).



[21] M. Svechnikov, J. Appl. Cryst. 53, 244 (2020).
[22] A. Koutsioubas, J. Appl. Cryst. 54, 1857 (2021).

[23] A. Glavic, J. Appl. Cryst. 55, 1063 (2022).
[24] M. Wagener and S. Förster, Sci. Rep. 13, 780 (2023).


