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Abstract. We review recent inelastic neutron scattering experiments aimed at investigating still open issues 
in the microscopic dynamics of liquids. It is shown that the interpretation of experimental results is put on 
solid ground by the application of modern methods of analysis and lineshape modelling which ensure the 
fulfillment of fundamental physical properties that the spectra must obey. This last condition becomes 
crucial to avoid overinterpretations of the genuine information conveyed by scattering data, especially when 
studying weak signals in the dynamic structure factor. Moreover, we highlight the different roles that neutron 
data presently play compared to molecular dynamics simulations depending on the nature of the sample, 
including the case of quantum liquids. In particular, we show how neutron measurements remain an 
indispensable benchmark in assessing the present capabilities of classical and quantum simulation methods. 
We also mention the potential of statistical methods, such as Bayesian inference, when applied to neutron 
data analysis and the opportunity they provide in establishing the spectral features without arbitrary 
assumptions on the model lineshape. 

1 Introduction 

Inelastic neutron scattering (INS) is a master technique 
for experimental studies on the dynamic behaviour, at 
the nanometre and picosecond scales, of various classes 
of liquids. Topical examples are given by the pioneering 
works on the longitudinal collective excitations (sound 
waves) in liquid metals as Pb and Rb [1,2], which 
opened the way to the numerous investigations on 
metallic liquids carried out up to present times [3,4]. In 
particular, these simple monatomic liquids were more 
recently taken as reference systems for studies of shear 
waves through the search for possible low frequency 
excitations in the dynamic structure factor S(Q,ω) [5], 
which is accessed by both INS and inelastic x-ray 
scattering (IXS) techniques when the probe exchanges a 
momentum ħQ and an energy E = ħω with the sample, 
ħ being the reduced Planck constant. 

However, the true realm of neutron scattering is 
liquid H2, together with its heavier counterpart D2. 
Across the years, both these fluids attracted much 
interest when investigating general aspects of the single-
particle (self) dynamics of an incoherent scatterer like 
H2 [6-9], or quantum effects on either the self [10,11] or 
the collective properties [12-14] of these systems. In 
fact, the low molecular mass of H2 and D2 and the low 
temperatures at which they are in the liquid phase lead 
to evident manifestations of quantum behaviour, as 

 
* Corresponding author: guarini@fi.infn.it 

further detailed in Sect. 3. Moreover, H2 and D2 are the 
most used moderating materials for the production of 
low-energy (about 1 meV) neutrons. In this respect, the 
design of new generation hydrogen-based cold neutron 
sources requires the availability of reliable databases of 
the scattering law taking explicitly the quantum nature 
of these fluids into account. Simultaneously, it demands 
an efficient mapping of the whole kinematic (Q,ω) range 
for best estimates of the response function. Such 
requirements unavoidably call for simulation methods 
capable of providing reliable dynamical data on H2 and 
D2, since experiments will never cover, in reasonable 
times, the innumerable kinematic conditions 
contributing to a total cross section calculation, with 
varying incident neutron energy. Available 
semiclassical methods for simulating the dynamics of 
H2 and D2, like ring polymer molecular dynamics 
(RPMD) [15] and two versions of the Feynman-Kleinert 
(FK) approach [16,17], urge then an experimental 
check, and neutrons are the best probe for this purpose. 

Here we review recent INS investigations of both the 
mentioned classes of liquids, with specific interest in the 
methods of analysis. In particular, we first address the 
case of liquids which can be assumed to behave 
classically, like molten metals, with special focus on the 
still debated claim that the experimental S(Q,ω) of some 
metals [18,19] bears the signature of low-frequency 
transverse-like excitations. As a matter of fact, a 



dependence on the methods of analysis emerges, so the 
state of the art of reliable approaches for model fitting to 
the data is discussed in some detail.  

The remainder of the paper deals with the case of a 
quantum liquid like D2, while discussing the present 
need for absolute scale comparisons between neutron 
data and quantum simulations probing the translational 
dynamics through the centre of mass dynamic structure 
factor SCM(Q,ω) of the liquid. Indeed, the effectiveness 
of quantum calculations of the microscopic dynamics 
has been poorly tested until present, hindering the 
possible use of existing quantum simulation methods in 
the mentioned applications related to cold neutron 
production. The benchmark of neutron measurements 
evidences the still lacking performance of the 
semiclassical approximations adopted in each of the 
available quantum simulation techniques. 

2 Transverse dynamics of liquid metals 

In the 1970s, simulation studies of specific time 
autocorrelation functions [20] have shown that dense 
fluids can sustain shear wave propagation at sufficiently 
small wavelengths (around and below 0.5 nm, 
approximately). The specific functions we are referring 
to are the transverse current autocorrelation function 
CT(Q,t) and the velocity autocorrelation function Z(t). 
The former is given by 
 

               CT(Q,t) = 〈jT*(Q,0) ⋅ jT(Q,t)〉 / (2N),                (1) 

 
with jT(Q,t) = j(Q,t) − jL(Q,t), where the current of an N 
particle system is j(Q,t) = ∑α vα(t) exp[i Q ⋅ Rα(t)], Rα(t) 
and vα(t) denoting the position and velocity of the α-th 
particle at time t, and jL(Q,t) is the longitudinal current, 
i.e. the projection of j(Q,t) on the wavevector Q. The 
angular brackets in Eq. (1) stand for the statistical 
average in the canonical ensemble [5]. The velocity 
autocorrelation function is defined by 
 

                  Z(t) = ∑α 〈vα(0) ⋅ vα(t)〉 / N.                 (2) 

 
In particular, the spectrum Z(ω) of Eq. (2) can be 
considered, for a liquid, as a sort of equivalent of the 
phonon density of states (DoS) in solid state physics. 
Unfortunately, neither Z(ω), nor the spectrum of the 
transverse current autocorrelation function, CT(Q,ω), 
can actually be measured. Indeed, past determinations of 
Z(ω) by incoherent neutron scattering [6-8] revealed to 
be demanding. INS and IXS experiments enable the 
determination of the space and time Fourier transform 
of the microscopic density autocorrelation function, i.e. 
of the dynamic structure factor S(Q,ω) mentioned in the 
Introduction. However, S(Q,ω) is a longitudinal quantity 
by definition [5], therefore detectability of transverse-
like contributions to this function has often been 
objected as a matter of principle [21]. Nonetheless, more 
than ten years ago, at least two papers analyzing IXS 
data on two molten metals [18,19] reported the presence 
of an additional low-frequency component in the 
measured S(Q,ω). In both works, the same 
phenomenological model was fitted to the experimental 

spectra. In particular, the fit function was modelled by 
adding one or two (depending on Q) damped harmonic 
oscillator (DHO) doublets [22] to a central Lorentzian, 
the latter accounting for relaxation processes in an 
effective way. However, such a modelling disregards 
the fact that the global fit function has a divergent 
second frequency moment [5,22] in place of the finite 
theoretical value kBTQ 2 / M, where kB is Boltzmann 
constant, T the temperature, and M the atomic mass of 
the fluid. As we will show, the physical consistency of 
the adopted models can instead be decisive for a correct 
interpretation of the experimental results. 

At present, there are two possibilities to limit the 
arbitrariness of fit-based procedures. The first is based 
on the availability of an exact theory for the functional 
form of autocorrelation functions and corresponding 
spectra [23-25], where known constraints can be easily 
imposed. In this case, one can choose a few tentative 
models guided by physical considerations, then enforce 
at least the most important sum rules that S(Q,ω) must 
obey, and finally check which model provides the best 
fit quality with simultaneous minimization of the 
number of free parameters. 

The other possibility is to control model fitting to the 
data on a statistical basis, without imposing a priori the 
number of excitations. At present, we use simple 
phenomenological models in a complex algorithm 
exploiting Bayes theorem to estimate the posterior 
probabilities, conditional to the experimental data, of the 
various parameters, including the number of excitations 
itself [26]. The information from the posterior 
distributions permits to control, in a statistical sense, 
what the data actually support.  

Both the theoretically and the probabilistically 
grounded approaches for the modelling of the scattering 
signal are briefly described in the next subsections.  

2.1 Exponential Expansion Theory (EET) 

The theory states that any normalized autocorrelation 
function c(t) / c(0) = 〈 A(0) A(t)〉 / 〈A(0)2〉 of a generic 
dynamical variable A(t) can be represented by a series of 
exponential terms, called modes, with generally 
complex amplitudes Ij and frequencies zj, i.e.: 

 
                          c(t) / c(0) = ∑j Ij exp(zj | t |).    (3) 

 
Consequently, the spectrum is a sum of so-called 
generalized Lorentzian lines 
 

               c(ω) / c(t = 0) = ∑j (−Ij zj) / [π (ω2+ zj
2)].   (4) 

 
In particular, if Ij and zj are real, we are dealing with 
relaxation processes with decay constant zj < 0, which 
contribute with genuine central Lorentzians to the 
spectrum. If Ij and zj are complex, pairs of conjugate 
modes are present in the series and account for damped 
oscillatory components in the correlation function due 
to collective excitations characterized by a damping 
Re(zj) < 0 and a frequency Im(zj). Such complex pairs 
correspond to two distorted Lorentzian lines in the 
spectrum, centred at the nonzero frequencies ± Im(zj), 
respectively. As far as the sum rules are concerned, 



normalization is guaranteed by enforcing the condition 
∑j Ij = 1. In addition, constraints are imposed on the odd 
time derivatives of c(t) at t = 0 in the form 
 

                  [d pc(t) / dt p]t = 0 = ∑j Ij zj 
p = 0, for odd p  (5) 

 
which ensure the correct behaviour of the function at the 
time origin and are equivalent to require the finiteness 
of the even spectral moments in the frequency domain. 

Luckily, most correlation functions of interest in 
liquids dynamics are accurately described by a small 
number of modes, meaning that the main dynamical 
processes are actually few. The scheme of the modes 
may of course change with varying the thermodynamic 
state and the probed length scale (Q). At each 
wavevector and thermodynamic state, the best model is 
chosen on the basis of the corresponding fit quality and 
of some general knowledge on liquids’ behaviour.  

In what follows, three models complying with the 
general EET will be considered for S(Q,ω). The simpler 
one is a generalized hydrodynamics (GH) triplet with Q-
dependent parameters [5]. It is a single-excitation model 
consisting of one central Lorentzian, accounting for 
thermal diffusion and structural relaxation in an 
effective way, plus one doublet of distorted Lorentzians 
representing the longitudinal sound waves propagating 
in the fluid. The model spectrum is constrained to have 
a finite second frequency moment. The second 
modelling is the viscoelastic (VE) lineshape [22], which 
differs from the GH one as regards the relaxation 
phenomena (two central Lorentzians in place of a single 
one) and the obeyed sum rules. The VE model again 
foresees a single oscillatory component due to 
longitudinal collective excitations and its spectral 
moments are constrained to converge up to the fourth 
one. Finally, a two-excitation model, labelled 2C to 
mean “two complex pairs” [4], is considered in those 
cases where also shear waves have set in in the liquid. 
Relaxation phenomena are represented by an effective 
central Lorentzian and constraints are enforced to 
ensure, at least, a finite fourth frequency spectral. 
Detailed-balance asymmetry must be applied to the 
above models before comparison with experiment. 

2.2 Bayesian inference  

As demonstrated in previous works by some of us 
[26,27], Bayesian methods can be successfully applied 
to achieve a minimally biased and probabilistically 
grounded modelling of experimental spectra. The 
inferential approach relies on the use of a Markov Chain 
Monte Carlo algorithm endowed with a Reversible 
Jump (RJ) option [28] which enables the space of free 
parameters to contain also the number k of excitations, 
and identifies the model with the highest posterior 
probability evaluated according to Bayes theorem, i.e., 
conditionally on the experimental outcome. As 
mentioned above, thus far the code foresees the use of 
simple phenomenological models for S(Q,ω), consisting 
of an effective central Lorentzian plus a number k of 
DHO doublets. Details of the Bayesian inference 
algorithm can be found in Ref. [26]. It is important to 

note that when the number of possible models 
(numbered by k) is a parameter itself, a Bayesian 
analysis naturally includes the so-called Occam’s razor 
principle or “lex parsimoniae”, which states that 
between two models providing an equally good account 
of some evidence, the one containing the lower number 
of parameters is always to be preferred. Thus, 
overparametrizations are automatically avoided within 
the Bayesian approach [27]. 

In tackling the detectability of a second (transverse) 
excitation in the experimental S(Q,ω), we are specially 
interested in the posterior distribution of the parameter 
k, for which we assumed a uniform prior distribution 
(i.e., all models are considered to be a priori equally 
probable) in order to let the inferential process be driven 
uniquely by the experimental evidence. An example of 
the results of such a statistical analysis is discussed, 
along with EET-based ones, in the next section. 

2.3 INS and simulation results for Au and Ag 

Here we summarize the main results of two 
investigations carried out on liquid Au [3] and Ag [4] by 
both INS and ab initio molecular dynamics (AIMD) 
simulations. Both metals were studied experimentally in 
the so-called neutron Brillouin scattering (NBS) regime, 
i.e., at the rather low wavevectors ranging from a few 
inverse nanometres (e.g., 4 nm-1) to values slightly 
exceeding Qp / 2, where Qp ≈ 26 nm-1 is the position of 
the maximum in the static structure factor S(Q) of both 
metals. Since liquid metals are characterized by a high 
sound velocity cs (i.e., 2568 m/s in Au and 2790 m/s in 
Ag) the rather energetic beam (incident energy E0 ≈ 80 
meV, energy resolution HWHM = 1.5 meV, 
corresponding to 2.3 rad ps-1 in ω) of the small angle 
BRISP spectrometer at the Institut Laue Langevin (ILL) 
[29,30] was required to span the mentioned Q range in 
both cases. At the same time, the experimental work was 
paralleled by AIMD calculations (details are given in 
Refs. [3] and [4]) to check the capability of ab initio 
methods in reproducing the neutron results and, in the 
case of satisfactory comparisons, use the simulations to 
extend the study of the dynamics to higher wavevectors. 

The first experiment was performed on Au. An 
example of the experimental S(Q,ω) at the highest Q of 
the measurements is given in Fig. 1.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Experimental (resolution broadened) S(Q,ω) of liquid 
Au (dots with error bars) and GH fit (red solid curve). 
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An EET analysis of the spectra showed that a simple 
GH triplet (see red curve in Fig. 1) was more than 
sufficient to obtain an accurate description of the data at 
all Q values. Thus, no evidence of transverse excitations 
was found from the experimental spectra of liquid Au. 
Nonetheless, the very good agreement between neutron 
data and simulations (see Fig. 2) justified an EET 
analysis of the simulated S(Q,ω) in the wide range 
4 nm-1 < Q < 70 nm-1 probed by AIMD. In this case, a 
GH modelling was found to be insufficient, while 
spectra were perfectly described by a VE lineshape. An 
example of the fit quality is given in Fig. 3. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Simulated S(Q,ω) at a representative Q value, taking 
asymmetry and experimental resolution into account (black 
curve). The red curve is the GH fit to the experimental data. 

The VE fits to the simulations thus permitted to 
better resolve the central peak, but again only a single 
excitation could be detected. In summary, signs of shear 
waves turned out to be absent in both the experimental 
and simulated S(Q,ω) of liquid gold. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Simulated S(Q,ω) of liquid Au (black circles). The GH 
fit (red thin curve) is clearly inaccurate, while the VE 
modelling (pale blue curve) provides a high fit quality. 

However, shear waves clearly propagate in this 
liquid as witnessed by the maximum in the DoS shown 
in Fig. 4(b), and by the evolution, as Q grows, of a low-
frequency maximum in CT(Q,ω) (see Fig. 4(c)). The 
dispersion relation we were able to determine from both 
experiment and simulations contains instead only the 
longitudinal branch (Fig. 4(a)).  

A study similar to that on Au was later carried out on 
liquid Ag, again by using the BRISP spectrometer and 
performing parallel AIMD calculations. As far as the 
measurements are concerned, a GH modelling was the 

only justified within the accuracy of the data (see Fig. 
5), thus providing no evidence of a second excitation in 
the neutron spectra, like in the case of gold.  

 
 
 
 
 
 
 
 

Fig. 4. (a) Dispersion relation obtained from NBS (red dots) 
and AIMD data (black dots); the dashed black line is the 
hydrodynamic law ωs = cs Q. (b) DoS of liquid Au from 
AIMD. (c) Normalized CT(Q,ω) at Q values ranging from 4.0 
(blue monotonic curve) to 25.5 nm-1 (broad purple curve). The 
magenta dashed lines, containing the maxima of ωs(Q), 
highlight the frequency band where the DoS shows the typical 
shoulder due to longitudinal modes. The green dashed curve, 
marking the frequency around which the maxima of CT(Q,ω) 
evolve in panel (c), is shown to correspond to the frequency of 
the maximum in the DoS, the latter owing to the weakly 
dispersive transverse modes that were not detected from 
S(Q,ω), thereby leaving a missing branch in panel (a). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Experimental (resolution broadened) S(Q,ω) of liquid 
Ag (dots with error bars) and GH fit (red solid curve). 

By contrast, when we analyzed the AIMD 
simulations, we found that above Q = 15 nm-1 a VE 
lineshape became insufficient, while a 2C model (see 
Sect. 2.1) provided a very accurate description of the 
simulated spectra, as shown in Fig. 6. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. AIMD S(Q,ω) of liquid Ag (circles) and 2C fit (red 
solid curve). The spectral components are also shown. 
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The 2C fits to the AIMD data of Ag thus enabled the 

determination of a second, low-frequency, branch ω t(Q) 
in the dispersion relation displayed in Fig. 7. However, 

when ω s starts to decrease, the fits become unstable and 
the low-frequency modes are badly determined. 
Conversely, transverse-like modes are clearly detected 

whenever ω s and ω t have considerably different values. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Dispersion relation of liquid Ag. Red dots and black 
circles represent the longitudinal branch as obtained from 
experiment and simulations, respectively. The transverse 
branch (green stars) could be determined only from the AIMD 

results at Q values where ω s and ω t are sufficiently different. 

Given the ambiguous situation between 
experimental and simulation results for liquid Ag, we 
revisited the neutron data by means of the second 
statistical route based on Bayes’ theorem and briefly 
described in Sect. 2.2. As mentioned, we are particularly 
interested in the posterior distribution of the parameter 
k, conditional to the experimental data set at hand 
(globally denoted as Y). The posterior distribution of the 
number of excitations is reported in Fig. 8 at both low 
and high values of the measured Q range.  

 
 
 
 
 
 
 
 
 
 
 

Fig. 8. Conditional posterior distributions of the number k of 
inelastic components in the experimental S(Q,ω) of liquid Ag 
at selected Q values.  

Clearly, the algorithm privileges the one-excitation 
case, confirming the undetectability of transverse modes 
in the available neutron data. Moreover, very well-
shaped unimodal posteriors were obtained for all the 
parameters [31] indicating the high reliability of the fit 
results which provided, within the errors, the same 
longitudinal dispersion curve of Fig. 7. Therefore, 
different ways to control the plausibility and coherence 
of model fitting to the data, like the EET and the 
Bayesian approaches, provide the same results. 

To further verify the output of the inferential 
analysis, it is possible to switch off the RJ algorithm and 
check the specific posterior distributions pertaining, 
separately, to the k = 1 and k = 2 cases. Figure 9 shows 
the corresponding posterior distributions for the 

undamped frequency Ω s = (ω s
2+Γs

2)1/2 of sound waves 

(Γ being the damping), along with that of shear waves 

Ω t present only in the k = 2 case. It is seen that in the 
two-excitation case a less symmetric distribution is 

obtained for Ω s and, more importantly, a broad and 

nearly flat distribution pertains to Ω t. The second 
excitation is therefore completely undetermined, 
confirming the RJ-on result where k is a free parameter. 

  
 
 
 
 
 
 
 
 
 
  
 
 
 
 

Fig. 9. Posterior distributions for the undamped frequency in 
the one- (cyan) and two-excitation (green for the transverse 
and pink for the longitudinal) cases, specifically obtained by 
switching off the RJ algorithm option. 

Finally, to better understand why experiments did 
not reveal a second excitation in S(Q,ω), we performed 
a rather stringent test on the Ag neutron data. First, we 
compared the performance of the EET 2C model with 
the GH one of Fig. 5. Figure 10 shows that at both 
reported Q values the second complex pair of the 2C 
lineshape is characterized by a negligible amplitude.  

 
 
 
 
 
 
 
 
 
 
 

Fig. 10. Fits of the 2C lineshape to the experimental S(Q,ω) of 
liquid Ag. The second complex pair of the model is the dashed 
green curve hardly distinguishable from the zero axis. 

Moreover, we found for this inelastic component an 
unreasonably large inelastic shift and an error on the 
damping doubling the damping value itself, meaning 
that such a parameter is undetermined. Therefore, 
according to lex parsimoniae, there are no reasons to 
choose the 2C result (8 parameters) in place of the GH 
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one (5 parameters) which provides an identical global fit 
curve. 

Then, we analyzed the neutron spectra in the 
phenomenological fashion adopted in other works 
[18,19], without any constraint except normalization. 
Figure 11 puts in evidence quite an embarassing 
situation, resembling very much that of Fig. 1 of Ref. 
[18] or of Ref. [19].  

 
 
 
 
 
 
 
 
 
 
 

Fig. 11. Fits of the neutron data on liquid Ag using the 
unconstrained phenomenological model specified in the figure 
title.  

The previous example demonstrates that the use of 
constrained models (i.e., obeying at least the most 
important sum rules) can completely change the results 
and the deduced physical properties. Indeed, 
uncontrolled fit procedures, escaping either physical or 
statistical consistency criteria are likely prone to biases 
of confirmation. Moreover, the above test shows that the 
undetectability of low-frequency contributions in 
appropriate modellings of the experimental S(Q,ω) is 
not due to the limited resolution or to the scattering of 
the data-points, but is merely a matter of analysis.  

As a final remark regarding this discussion on high-
temperature classical fluids, we can conclude that the 
experimental observation of shear waves is not yet 
assessed for either system, and still remains out of reach 
of the present spectroscopic techniques. In fact, 
convincing indications that S(Q,ω) bears also the 
signature of the transverse dynamics were only found by 
means of rather recent, quantitative EET-studies of 
simulation results [4]. On the other hand, neutron data 
on these classical systems showed the effectiveness of 
ab initio simulation methods, which open the way to 
extended investigations of the dynamical behaviour of 
simple classical liquids, without limitations in 
wavevector.  

3 “Boltzmann” quantum liquids: D2 

Liquid hydrogen and deuterium represent an 
intermediate case within the few systems displaying 
quantum behaviour (He, H2, D2, and Ne). In fact, they 
are so-called Boltzmann quantum fluids, where, 
differently from the case of helium, exchange effects 
due to particle indistinguishability are supposed to be 
negligible in comparison to particle delocalization, and 
Boltzmann statistics can still be assumed to hold. 
Therefore, distinct trajectories in phase space can still be 
defined, and molecular dynamics methods applied, 
although with obvious differences from a purely 

classical treatment. This is the reason why H2 and D2, 
can be considered as moderate quantum fluids, since 
only single-molecule delocalization is actually 
responsible for a nonclassical behaviour, as suggested 
by the limited values [32] reached by the de Broglie 
thermal wavelength Λ = h / (2π M kBT )1/2 even close to 
their respective triple points.  

The characteristic length scale considered for 
comparisons with Λ at a certain temperature is the mean 
interparticle distance l = n −1/3, with n being the number 
density. At all relevant liquid densities and temperatures 
of H2 and D2, the condition Λ < l holds [32], implying 
that overlap of the spatial wave functions of two 
adjacent molecules, and consequently quantum 
exchange, does not occur on average, so that quantum 
statistics need not be invoked. Nonetheless, Λ can reach 
values of the order of the molecular size, giving anyway 
rise to quantum delocalization effects that must be 
accounted for in some approximate, semiclassical way. 

A recent review of the available semiclassical 
approximations for calculations of the dynamic structure 
factor of moderate quantum fluids, like RPMD [15], FK-
Linearized Path Integral (LPI) [16] and FK-Quasi 
Classical Wigner (QCW) [17], can be found in Ref. [14]. 

On the experimental side, neutron measurements on 
these liquids have been few, and often reporting the 
double differential cross section in arbitrary units 
(including the rotational contributions) [12,13] rather 
than the centre of mass dynamic structure factor 
SCM(Q,ω) in absolute ones. Experimental knowledge of 
the translational dynamics would instead be very helpful 
for an in-depth verification of the mentioned simulation 
methods, enabling or not their possible use in 
applications. These reasons induced us to perform a 
neutron measurement on liquid D2, accompanied by the 
RPMD, FK-LPI and FK-QCW calculations detailed in 
Ref. [14], all relying on the isotropic Silvera and 
Goldman intermolecular potential [33]. 

The experiment was carried out on the BRISP 
spectrometer in the standard configuration used also for 
the metallic samples. After corrections for background, 
attenuation and multiple scattering, the single scattering 
intensity of a diatomic homonuclear molecule can be 
schematized as  
 

 I(1)(Q,E) = C {(k1 / k0) [u(Q)SCM(Q,E)+J(Q,E)]}⊗R(E),  (6) 

 
where C is a normalization factor and k1/k0 is the ratio of 
scattered to incident neutron wavevector. In Eq. (6), 
u(Q) is the intermolecular cross section depending only 
on the coherent scattering length of D, while J(Q,E) is 
an intramolecular term accounting for the rotational 
structure and which depends also on the incoherent 
scattering length of D. Both u(Q) and J(Q,E) can be 
confidently calculated within well-known 
approximations complying, in the case of J(Q,E), with 
the asymmetry requirements of quantum spectra [14]. 
Finally, R(E) is the instrument energy resolution 
function. 

The quantity we are interested in is the quantum 
SCM(Q,E), which is related to the Kubo (symmetric) 
dynamic structure factor SCM,K(Q,E) through the well-
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know asymmetry factor β E / [1-exp(−β E)], with 
β = (kBT)-1. Therefore, one can model SCM,K(Q,E) by 
means of a classical lineshape and perform an overall fit 
to I(1)(Q,E) according to Eq. (6) and to the asymmetry 
condition quoted above. Again, a GH model for 
SCM,K(Q,E) was found to provide an accurate description 
of the data, as shown in Fig. 12(a) for a representative Q 
value. The various components of the fit function can be 
better appreciated in the zoom of Fig. 12(b) and are 
detailed in the caption. 
 
 
 
 
 
 
 
 
 
 

Fig. 12. (a) Single scattering intensity of liquid D2 (black 
circles with error bars) and global fit curve (red solid line) 
according to Eq. (6). (b) Zoom of panel (a): the magenta dot-
dashed curve is the intramolecular component, with visible 
rotational lines; the dotted and dashed black curves are the 
elastic and inelastic components which sum up to give, within 
a normalization factor, the asymmetric GH-based SCM(Q,E) 
(cyan dashed curve); the green solid curve accounts for a small 
amount of H2 likely present in the sample.  

The fits to I(1)(Q,E) then provided the sought-for 
absolute scale and resolution-free SCM(Q,E). The latter 
is compared, at 9 nm-1, with the various simulation 
results in Fig. 13. Similar results were obtained at other 
wavevectors [14]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13. Resolution-free quantum dynamic structure factor of 
liquid D2 in absolute units, as obtained from the fits to the 
neutron data (red solid curve) and from different semiclassical 
approximations used in available quantum simulation 
techniques, each one specified in the legend and detailed in 
Ref. [14].  

The comparisons in Fig. 13, needless to say, are 
quite unsatisfactory independently of the attempted 
simulation method. Neutron data visibly show much 
more marked collective excitations. Moreover, 
simulations do not agree even among themselves. 

Despite the clear loss of important details of the 
dynamical structure, it is anyway valuable that the 
absolute scale of neutron and simulation data is the 
same. 

In order to compare frequencies and damping 
coefficients derived from experiment and simulations in 
more detail, we carried out also a thorough EET analysis 
of the RPMD and FK-QCW results. All simulation 
outputs were found to be accurately described by a VE 
model at the investigated Q values. The corresponding 
longitudinal dispersion curve and wavevector 
dependence of the damping coefficient of liquid D2, are 
finally shown in Fig. 14. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 14. Experimental (red full circles), RPMD (blue empty 
circles), and FK-QCW (green empty stars) dispersion curve of 
sound modes. The dashed black line is the hydrodynamic 
behaviour csQ, with cs = 0.984 nm/ps. The damping coefficient 
is displayed with red full squares, blue empty squares, and 
green empty diamonds for experiment, RPMD and FK-QCW, 
respectively. 

Figure 14 shows that, although the dispersion curves do 
not agree within the errors at some Q value, this property 
is reasonably captured by simulations, especially by the 
FK one. Conversely, the striking feature in the plot is the 
smaller damping deduced from the measurements. 

The long lifetime of collective excitations is 
considered to be one of the main dynamical 
manifestations of quantum behaviour [34]. Apparently, 
the present simulation techniques do not fully grasp a 
salient feature of quantum liquids dynamics. Of course, 
we cannot exclude with absolute certainty some 
systematic errors in the (demanding) neutron data 
analysis. However, the disagreement among simulation 
results suggests that the semiclassical approximations 
adopted in each technique should anyway be improved. 
Indeed, while the dispersion curve is acceptably 
accounted for by computations, which is anyway an 
achievement, an important property of cold liquids, i.e., 
the damping of sound waves, is largely missed and 
systematically overestimated. 

4 Final remarks 

The examples reported in this work show that the degree 
of accuracy with which simulations of S(Q,ω) are able 
to reproduce experimental data is very different for 
classical and quantum liquids: it is very high in the first 
case and still rather low in the second. 
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As a general result, we demonstrated that 
unconstrained analyses of S(Q,ω) can be deceptive, 
while use of the EET enables very accurate and 
physically-grounded descriptions of both experimental 
and simulation data. 

The future of course lies in the implementation of 
EET-based models within algorithms exploiting 
Bayesian inference, so to maximize both physical and 
statistical consistency of fit results and avert possible 
biases in the analysis. 
 
We acknowledge the BRISP spectrometer at the ILL, no 
longer operational, which was the state of the art instrument 
for neutron Brillouin scattering at thermal energies: a neutron 
technique of extreme importance for studies of dense liquids 
dynamics. Regretfully, no equivalent instrument exists at 
present in the world, which is a deadweight loss. 
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