Study of magnetocaloric materials in the system $\text{Mn}_{2-x}\text{M}_x\text{Sb}$ (M=Fe, Co)

Tuesday, 19 July 2016 16:50 (160)

Magnetocaloric refrigeration is an emerging technology in today’s cooling devices and it has a potential to save about 20-30 % of energy compared to conventional vapor compression technology. Nowadays, the most important issue is to find cheap and abundant materials exhibiting a sizable magnetocaloric effect. We report on preparation and characterization of compounds of general composition Mn$_{2-x}$M$_x$Sb system with M = (Fe, Co). The substitution on the Mn site has an effect on magnetic properties and magnetic transitions. We synthesized samples of different stoichiometry by inductive melting of the elements in a cold crucible and performed studies using x-ray powder diffraction method and macroscopic magnetization measurements. Based on these data we could then calculate the entropy change. In the Fe-containing samples, in particular in Mn$_{1.8}$Fe$_{0.2}$Sb, we observe a small MCE associated to a paramagnetic-ferrimagnetic phase transition. The Co-doped samples reveal a more sizable MCE accompanying a ferri-to-antiferromagnetic phase transition. Currently we study the response of the lattice parameter to the magnetic transitions with low temperature powder diffraction (300-15 K).

Primary author(s) : Mr CHIKOVANI, Mamuka (Jülich Centre for Neutron Science/Peter Grünberg Institut-4, Forschungszentrum Jülich GmbH, Germany)

Co-author(s) : Mr PERßON, Jörg (Jülich Centre for Neutron Science/Peter Grünberg Institut-4, Forschungszentrum Jülich GmbH, Germany); Dr VOIGT, Jörg (Jülich Centre for Neutron Science/Peter Grünberg Institut-4, Forschungszentrum Jülich GmbH, Germany); Dr FRIESE, Karen (Jülich Centre for Neutron Science, Forschungszentrum Jülich GmbH, Germany); Mr HERING, Paul (Jülich Centre for Neutron Science/Peter Grünberg Institut-4, Forschungszentrum Jülich GmbH, Germany); Prof. BRÜCKEL, Thomas (Jülich Centre for Neutron Science/Peter Grünberg Institut-4, Forschungszentrum Jülich GmbH, Germany)

Presenter(s) : Mr CHIKOVANI, Mamuka (Jülich Centre for Neutron Science/Peter Grünberg Institut-4, Forschungszentrum Jülich GmbH, Germany)

Session Classification : Poster Session

Track Classification : Energy storage & transformation