

X-ray Diffraction Studies on the Lithiation of LiAI Electrodes for Li Ion Batteries Thien An Pham^{1,2}, Luke Wells³, Stefan Seidlmayer¹, Giovanni Ceccio⁴, Antonino Cannavo⁴, Vacík Jiří⁴, Peter Müller-Buschbaum^{1,2}, Egbert Figgemeier³, Ralph Gilles¹

Aluminium as Anode Material

Why Aluminium?

- Higher volumetric capacity than graphite
- \succ Large resources \rightarrow low material costs

Samples

- \succ Coin cells with Al sheets (16µm thickness) with Li counter electrode and electrolyte
- (1.2M LiPF6, EC:EMC 3:7 + 10wt% FEC) Disassembled and washed with DMC in glovebox

Experimental Procedure

Lithiation

- Performed in 40°C temperature chamber
- Cells loaded with C/40 to SoC25 and SoC50
- $(\beta$ -LiAl = fully lithiated phase = SoC100)

Contact: Thien An Pham E-mail: <u>thien-an.pham@frm2.tum.de</u> Phone: +49 89 289-11774

¹Heinz Maier-Leibnitz Zentrum (MLZ), TU München, Lichtenbergstr. 1, 85748 Garching, Germany ²TU München, Physik-Department, LS Funktionelle Materialien, James-Franck-Str. 1, 85748 Garching, Germany ³RTWH Aachen, Institut für Stromrichtertechnik und Elektrische Antriebe, Jägerstr. 17-19, 52066 Aachen, Germany ⁴Nuclear Physics Institute of the Czech Academy of Sciences, Husinec - Řež, čp. 130, 250 68 Řež, Czech Republic

für Bildung und Forschung

2⊖ (Mo) [°]

25% lithiation

Phase Fractions

 \succ Higher α -LiAl for 25% lithiation \succ Higher β -LiAl and LiOH for 50% lithiation

Formation of LiOH

Samples exposed to ambient air Reaction of Li with moisture

 \succ Correlation with potential curve \rightarrow Determination of phase trainstion onset \succ Reduction of ambient air contamination \rightarrow Inhibition of LiOH formation

> -Pristine with 2.8µm macrofol filter ⁴He ³H back side <u>8</u> 0.05 700 600 800 400 500 300 Channel

Bundesministerium für Bildung German Federal Ministry of Education and Research (BMBF) in the project ExZellTUM III (03XP0255).

References

[1] Obrovac, M. N. and V. L. Chevrier (2014). <u>Chem Rev</u> **114**(23): 11444-11502.

[2] Okamoto, H. (2012). Journal of Phase Equilibria and <u>Diffusion</u> **33**(6): 500-501.

[3] Liu, D. X. and A. C. Co (2016). <u>J Am Chem Soc</u> **138**(1): 231-238.

[4] Levine, E. D. and E. J. Rapperport (1963). <u>Transactions of</u> the Metallurgical Society of AIME 227: 1204-1208

[5] https://www.mtixtl.com/CR2016Casewith2sidesKapton Window-EQ-CR2016-Kapton-2s.aspx

