QENS study of the diffusivity of hydrogen in MoS₂

Vitalii Kuznetsov^{1,2}, Wiebke Lohstroh³, Marek Koza¹, Detlef Rogalla⁴, Hans-Werner Becker⁴, Thomas Strunskus⁵, Alexei Nefedov⁶, Eva Kovacevic⁷, Franziska Traeger² and Peter Fouquet¹

¹Institut Laue-Langevin, Grenoble, France, ²Westfälische Hochschule, Recklinghausen, Germany, ³TU München, FRM II, Garching, Germany, ⁴RUBION, Ruhr-Universität Bochum, Bochum, Germany, ⁵Universität Kiel, Kiel, Germany, ⁶Karlsruher Institut für Technologie (KIT), Eggenstein-Leopoldshafen, Germany, ⁷GREMI, Université d'Orléans, Orléans, France

Abstract Understanding of diffusion patterns of hydrogen inside the promising HER catalyst, MoS₂, is crucial for a deliberate development of its properties for future use in hydrogen electrolysis. Hence the diffusion of various hydrogen species adsorbed inside layered MoS₂ crystals has been studied by means of quasi-elastic neutron scattering, nuclear reaction analysis and Xray photoelectron spectroscopy. The neutron time-of-flight measurements demonstrate fast diffusion of hydrogen molecules parallel to the basal planes of MoS₂, and slower motion of atomic hydrogen. Penetration of MoS₂ layers by hydrogen was observed by nuclear reaction analysis on a completely different timescale.

Nuclear Reaction Analysis, out-of-plane

NRA shows that the highest initial bulk H concentration is achieved by loading via electrolysis. Water, as expected, does not penetrate MoS₂ layers. The estimated diffusion coefficient for the two other loading processes is $D \sim 10^{-21} \text{ m}^2/\text{s}.$

XPS

XPS scans of the H/MoS₂ exhibit several reduction sequences along heating, indicating that in this sample hydrogen should be bound in at least two different environments with different binding energy.

> The surface of the electrolysis loaded crystal, on the other hand, mostly shows oxidation

The diffusion of various hydrogen species in a promising HER catalyst, MoS₂, have been studied via Conclusion QENS, NRA and XPS. The rate of atomic H diffusion along the MoS₂ basal planes appeared to be slower than the reported one for H on Pt surface, $\sim 10^{-9}$ m²/s as compared to $\sim 10^{-8}$ m²/s, respectively, which may be one of the reasons why the Tafel reaction step ($H_{ad} + H_{ad} \rightarrow H_2$) is hindered for this material. Electrolysis process most probably generates a large amount of H_2 in the bulk of MoS₂. These molecules are generally trapped within the matrix and do not desorb easily. Hydrogen atoms can penetrate MoS₂ layers, however, the process is extremely slow.