

# In-situ observation of electrodes formation on the nonfullerene organic solar cells by GISAXS technique



Xinyu Jiang<sup>a</sup>, Simon Jakob Schaper<sup>a</sup>, Matthias Schwartzkopf<sup>b</sup>, Stephan V. Roth<sup>b,c</sup>, Peter Müller-Buschbaum<sup>a,d</sup>

- a Lehrstuhl für Funktionelle Materialien, Physik Department, Technische Universität München, James-Franck Straße 1, 85748 Garching, Germany b DESY, Notkestaße 85, 22607 Hamburg, Germany
- c Department of Fibre and Polymer Technology, KTH, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
- d Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenberg Straße 1, 85748 Garching, Germany

# Organic solar cells



https://www.futureentech.com



https://infinitypv.com/products/

#### **Organic photovoltaics (OPV)**

/ light weight and flexible to substrates;
/ semitransparent for window-like applications;
/ low manufacturing costs comparing with inorganic
PVs, like silicone based cells
/ low environmental impact;

https://www.nature.com/news/

#### In-situ sputtering experiment



# Surface morphology before vs after sputtering



active layer a) and with 10 nm  $MoO_3$  on top b); 20 nm AL sputtered on the active layer c)and on active layer with  $MoO_3$  d).

### Materials and blocking layer



## In-situ GISAXS results



horizontal line cuts  $q_y$  and the corresponding fits in the range of the Al Yoneda peak without and with  $\text{MoO}_3$  layer versus the effective film thickness  $\delta.$ 

#### Conclusion

- Appearing of aluminum I peaks move from large to small q<sub>y</sub> values with increasing δ, which can be assigned to AI clusters appearing during the sputter process.
- Faster formation of aluminum cluster on pure active layer than on MoO<sub>3</sub> layer.

