

Novel CDB Data Processing and Evaluation Software

Leon Chryssos^{1,2}, Vassily V. Burwitz², Lucian Mathes², Christoph Hugenschmidt²

¹Physik Department E21, Technical University Munich ²Heinz Maier-Leibnitz Zentrum (MLZ), Technical University Munich

(C)DBS - (Coincident) Doppler Broadening Spectroscopy

DBS

center of mass

DB spectra are comprised of the energy spectum of the positron electron annihilation, measured with a single detector. In order to improve the signal-to-noise ratio of the Doppler broadened $511~\rm keV$ photo peak both annihilation $\gamma\text{-quanta}$ are measured. The resulting CDB data is 2 dimensional.

Single Spectrum

Coincidence Spectrum

STACS - Software to Analyze CDB Spectra

Region of Interest

- Easy to implement and computationally fast.
- With our improved background subtraction we yield a signal-to-background ratio of up to seven orders of magnitude.

Energy Binning

- Cutting through pixels with linear interpolation.
- Bin widths can be altered by user; for example wider bins can improve statistics at the cost of energy resolution.

Projection

Software Features

- Modular python package easy to use / adapt / improve.
- Fast computation (\sim few sec per projection).
- Includes background subtraction and several plotting features for displaying measurements, including the ability to create ratio curves or 2D histograms.
- First ever mutli detector CDB evaluation method with the ability to construct averaged projections from multiple detector pairs.
- Currently preliminary version, beta version will be released as an open source package.

Example Measurements

Background Subtraction Benchmark

- Performend on W single crystal provided by Annemarie Kärcher of the Max Planck Institute for Plasma Physics.
- Background subtraction makes doppler shifts larger than $30\ \rm keV$ visible.

Annihilation Fraction in Kapton using a $^{22}\mathrm{Na}$ Source

The positron annihilation fraction in Kapton during a CDBS measurement of Cu samples surrounding a $^{22}{\rm Na}$ source (sandwich geonetry) is calculated by comparing with a NEPOMUC beam measurement on Cu. Both experiments are performed at the CDB spectrometer at FRM II. $x_{\rm Kap}(\Delta E)$ represents the doppler shift dependent annihilation fraction of positrons in the $\sim 25~\mu{\rm m}$ thick Kapton source enclosure.

$$x_{\mathrm{Kap}}(\Delta E) = rac{p_{\mathrm{s}}^{\mathrm{Cu}}(\Delta E) - p_{\mathrm{b}}^{\mathrm{Cu}}(\Delta E)}{p_{\mathrm{s}}^{\mathrm{Kap}}(\Delta E) - p_{\mathrm{b}}^{\mathrm{Cu}}(\Delta E)}$$
 ,

where p represents the projection as a result of a CDB measurement, b and s represent beam and source measurements respectively.

The large variance of values between 0 and $3~\rm keV$ is a result of the shape of the photo peak projections. The annihilation fraction can be calculated by averaging the values from $3~\rm to~10~\rm keV$ and results in $x_{\rm Kap}=(19.8\pm3.2)~\%$. This analysis enables reliable comparisons of beam and source measurements in the future.

Contact: Leon Chryssos

E-mail: leon.chryssos@frm2.tum.de phone: +49 89 289 54844