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Introduction

Magnetic structure HoFeO, in zero field

/

Rare earth orthoferrites RFeO,

~~

Multiferroics - materials that exhibit more
than one of the ferroic properties in the
same phase.

Multiferroicity at room temperature has
been reported for some representatives of
the rare-earth orthoferrites family RFeO3
(e.g. YFeO3, LuFeO3, SmFe03)[1-4].
Dzyaloshinskii-Moriya interaction (DMI),
which leads to a weak ferromagnetism (WF)
in the Fe sublattice is proposed as one of
possible reasons for the electric polarization
in this materials. A spontaneous electric

Magnetocaloric effect (MCE) - the temperature
change in compounds by external magnetic field
in an adiabatic process. Usually it describe by
magnetic entropy change AS,,.

With applied magnetic field, a strong
magnetocaloric effect was found in HoFeO3 at
lower temperatures. Three peaks in the entropy-
change occur for a field variation of 0-7 T: ASM=9
J/Kg K at 53 K, ASM=15 J/Kg K at 10 K and
ASM=18 J/Kg K at 3 K [5]. The first peak is
associated with a spin reorientation in the Fe
subsystems solely. The last one should related to

Fe spin rotate in plana ac at Tz, = 35K.

The crystal structure of HoFeO; is described by the space group Pnma - #62.
Neel temperature T, = 647K, below which the Fe moments are ordered antiferromagnetically with
a weak ferromagnetic component order with representation I,.
The spin-reorientation phase transition to antiferromagnetic structure I'; takes place at Tz, = 53K,

The Ho sublattice spontaneously ordered below Ty, = 10 K.[6]

Phase 2

Phase I'1

Phase 4

T\=647K

=

polarization in HoFeO3 occurs at elevated | | the Ho ordering. While the second peak may be
N . . . Taua~5-10K T.,=35K T..,=53K
temperatures ~ 210 K related with some processes including both the NHo sr2 srl
Ho and Fe magnetic subsystems.
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All spin-orientation transitions can be described using competition between exchange interactions

inside the crystal and an external magnetic field. For example :
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In the phase 3 energy of Jf¢~HOo> B and

Fe—HO rotate the Fe spins in the plane ac.

In the phase 7 energy of Jf¢ H°< B and B

The exchange JHo~Ho

exchange ]fje_HO. This leads to rebalancing

has opposite sign with
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peaks of AS,, lie near the spin reorientation transition between phases 1 or 2 and 3; phases 4, 5 and 6[10].
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