

Institute for Inorganic Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart

Introduction

Syntheses with lanthanoid metals in glassy silica ampoules often tend to yield oxosilicates as by-products. Thus, the two presented silicates $Pr_2O[SiO_4]$ and $Sm_2O[SiO_4]$ were also obtained from different reactions including the elemental lanthanoids, but with other target compounds. Both crystallize isostructurally to the $Ln_2O[SiO_4]$ series with Ln = La, Nd, Eu, Gd, Ho – Tm and $Lu^{[1-6]}$ in the monoclinic space group $P2_1/c$ with the lattice parameters a = 925.49(8) pm, b = 717.19(6) pm, c = 692.06(5) pm, $\beta = 108.382(3)^\circ$ for $Pr_2O[SiO_4]_2$ (CSD-2127743) and a = 915.92(8) pm, b = 717.19(6) pm, c = 679.42(5) pm, $\beta = 107.825(3)^\circ$ for $Sm_2O[SiO_4]_2$ (CSD-2127807) adopting the Gd₂O[SiO₄]₂- or A-type structure with Z = 4.

Atomic Positions and Equivalent Isotropic Displacement Parameters

Experimental Procedure

	Pr ₂ O[SiO ₄]					Sm ₂ O[SiO ₄]			
Atom	<i>Wyckoff</i> site	x/a	y/b	z/c	$U_{\rm eq}/\rm pm^2$	x/a	y/b	z/c	$U_{\rm eq}/\rm pm^2$
Ln1	4 <i>e</i>	0.38805(7)	0.15075(9)	0.09143(9)	167(2)	0.38706(7)	0.14851(8)	0.08820(8)	147(2)
Ln2	4 <i>e</i>	0.01579(7)	0.12457(9)	0.23538(9)	157(2)	0.02097(7)	0.12454(8)	0.23477(8)	140(2)
Si	4 <i>e</i>	0.2988(4)	0.5825(5)	0.0420(5)	156(6)	0.2985(4)	0.5836(5)	0.0421(5)	147(6)
01	4 <i>e</i>	0.2935(10)	0.0714(14)	0.3644(12)	194(17)	0.2935(10)	0.0722(13)	0.3598(12)	167(16)
02	4 <i>e</i>	0.3659(10)	0.4617(12)	0.2509(12)	190(17)	0.3650(10)	0.4584(12)	0.2500(12)	194(18)
03	4 <i>e</i>	0.8801(10)	0.3649(13)	0.0039(13)	198(19)	0.8822(10)	0.3635(11)	0.0060(13)	183(17)
04	4 <i>e</i>	0.5926(10)	0.2528(14)	0.4468(13)	204(19)	0.5941(10)	0.2604(13)	0.4473(12)	233(19)
05	4 <i>e</i>	0.1127(10)	0.3742(12)	0.4500(14)	191(17)	0.1139(10)	0.3775(11)	0.4506(13)	177(18)

The oxidation of praseodymium or samarium metal with oxidizing agents such as selenium dioxide in the presence of sodium chloride as fluxing agent at 900 °C for 10 days in evacuated silica ampoules led to the formation of colorless, needle-shaped single crystals of $Pr_2O[SiO_4]$ and $Sm_2O[SiO_4]$ as a byproducts after some reaction with the SiO_2 container material. The insoluble single crystals could be collected after removal of the fluxing agent by washing the crude batches several times with demineralized water.

Crystallographic Data	Pr ₂ O[SiO ₄]	Sm ₂ O[SiO ₄]		
Crystal system	monoclinic			
Space group	<i>P</i> 2 ₁ / <i>c</i> (no. 14)			
Lattice parameters				
a/pm	925.49(8)	915.92(8)		
<i>b</i> /pm	733.97(6)	717.09(6)		
c/pm	692.06(5)	679.34(5)		
$\beta/^{\circ}$	108.382(3)	107.815(3)		
Number of formula units	Z = 4			
Calculated density (D_x in g/cm ³)	5.805	6.392		
Molar volume ($V_{\rm m}$ in cm ³ /mol)	446.12	424.79		
Diffractometer	κ-CCD (Bruker-Nonius)			
Wavelength	Mo-Kα: λ = 71.07 pm			
Diffractometer limit ($2\theta_{max}$ in deg)	65.83	56.62		
Index range (±h _{max} , ±k _{max} , ±l _{max} ,)	13 / 11 / 10	12/9/9		
Number of e ⁻ per unit cell (F(000))	688	712		
Absorption coefficient (µ in mm ⁻¹)	21.76	27.56		
Number of collected / unique reflections	7503 / 1564	9487 / 1051		
Data set residuals (R_{int} / R_{σ})	0.089 / 0.063	0.088 / 0.037		
Structure residuals (R_1 / wR_2)	0.057 / 0.147	0.044 / 0.102		
Goodness of Fit (GooF)	1.108	1.096		
Residual electron density	$\mathbf{D} 1 \mathbf{C} \mathbf{I} \mathbf{D} 1 \mathbf{O}$			

Structure Description

The Ln^{3+} cations occupy two crystallographically different positions. $(Ln1)^{3+}$ resides in a distorted capped square hemiprism with 8+1 oxygen atoms, while $(Ln2)^{3+}$ centers a capped trigonal prism with seven of them. The lanthanoid-oxygen distances, namely d(Pr-O) = 234 - 269 pm and d(Sm-O) = 231 - 259 pm, fall into the usual range, when compared with similar praseodymium and samarium oxosilicates, such as apatite-type $Ln_{4.667}O[SiO_4]_3$ (Ln = Pr and $Sm)^{[7]}$. Silicon is surrounded by a slightly distorted tetrahedron with four oxygen atoms as *ortho*oxosilicate anion $[SiO_4]^{4-}$ with silicon-oxygen distances ranging from 159 to 166 pm, which remains isolated. The fifth oxygen atom works as an O²⁻ anion, which is coordinated by four Ln^{3+} cations as $[OLn_4]^{10+}$ tetrahedron (d(O-Ln) = 230 - 243pm). Their interconnection via edges and corners leads to $\frac{2}{\infty} \{[O(Ln1)_{1/1}(Ln2)_{3/3}]^{4+}\}$ layers spreading out parallel to the (100) plane.

(max. / min.)

3.16 / -3.49

Program package SHELX-97 [8]

2.3//-2.40

Structure solution and refinement

Literature

K. Fukuda, T. Iwata, E. Champion, *Powd. Diffr.* 2006, *21*, 300.
 L. Leon-Reina, J. M. Porras-Vazquez, E. R. Losilla, L. Moreno-Real, M. A. G. Aranda, *J. Solid State Chem.* 2008, *181*, 2501.
 M. E. Bohem, Th. Schleid, *Z. Anorg. Allg. Chem.* 2016, *642*, 1055.
 Yu. I. Smolin, S. P. Tkachev, *Kristallografiya* 1969, *14*, 22.
 I. Hartenbach, S. F. Meier, J. Wontcheu, Th. Schleid, *Z. Anorg. Allg. Chem.* 2002, *628*, 2907.

[6] H. Müller-Bunz, Th. Schleid, *Z. Anorg. Allg. Chem.* **1999**, *625*, 613.
[7] I. Hartenbach, Th. Schleid, *Z. Kristallogr.* **2005**, *220*, 206.
[8] G. M. Sheldrick, *Acta Crystallogr.* **2008**, *A64*, 114.

Figure 1. Projection of the monoclinic crystal structure of $Ln_2O[SiO_4]$ (Ln = Pr and Sm) onto (010) showing the isolated $[SiO_4]^{4-}$ tetrahedra.

Figure 2. Anionic coordination polyhedra of the two crystallographically different Ln^{3+} cations in $Pr_2O[SiO_4]$ and $Sm_2O[SiO_4]$.