Neue intermetallische Phasen der Systeme Ba-Mg-Zn und Ba-Mg-Cd

<u>Katharina Köhler¹</u>, Markus Otteny¹, Julia Rohde¹, Caroline Röhr^{1,*}

¹: Institut für Anorganische und Analytische Chemie, Albert-Ludwigs-Universität Freiburg;

* caroline@ruby.chemie.uni-freiburg.de

Im Rahmen von Untersuchungen zur Rolle des Magnesiums in ternären Zinkiden und Cadmiden der schwereren Erdalkalimetalle (A = Ca, Sr, Ba) konnten wir im System Ca–Mg–Zn im engen Zusammensetzungsbereich von M:A (M = Mg, Zn) zwischen 3.83 und 5.33 eine umfangreiche Reihe verwandter neuer Phasen erhalten ([1], Abb.: blau schraffiert). Diese weisen als M-Polyanionen zentrierte Würfel ($[MM_{8/2}]$, cC, blau), kanten-überkappte Tetraeder- ($[M_4M_4M_{6/2}]$, μ TS, grün) und -Doppeltetraeder-Sterne ($[M_5M_6M_{6/2}]$, μ -DTS, rot) auf, die über Ecken zu hexagonalen Schichten variabler Stapelfolgen verknüpft sind. Randverbindungen der Serie sind der kubische Th₆Mn₂₃- (cC+ μ TS, A) und der hexagonale Eu₃Mg₁₆-Typ (cC+ μ DTS, C). Dagegen waren für A=Sr bzw. Ba mit Ba₆Mg₂₃ [2], Sr₃Mg₁₃ [2] und SrMg_{5.2} [3] bereits die zu dieser Strukturfamilie gehörenden binären Magneside bekannt. Daher wurden zunächst die Ba-Mg-Phasen mit Zn (weitere Verbindungen s. [4]) und Cd systematisch präparativ, röntgenographisch und bindungstheoretisch untersucht.

Ausgehend von Ba_6Mg_{23} (\mathbf{A}) ist für Zn eine lückenlose Mg→Zn-Substitution bis $Ba_6Mg_{24}Zn_9$ (39 % Zn), für Cd eine noch weitergehende bis $Ba_6Mg_{12}Cd_{11}$ (48 % Cd) möglich. Zn und Cd besetzen dabei bevorzugt die zentrale TS-Position. Die übrigen Kolorierungstrends (Mg/Zn-Verteilung) entsprechen denen der voll geordneten Ca-Phase $Ca_6Mg_8Zn_{15}$ [5] und lassen sich mit geometrischen Kriterien und quantenchemischer Rechnungen erklären. Die neue

Verbindung $Ba_3Mg_9Zn_4$ (**B**) ist die erste Ba-haltige Stapelvariante des hexagonalen Sr_3Mg_{13} -Typs. Im Unterschied zu den – durch eine $Ca \rightarrow Zn_2$ -Substitution – stark fehlgeordneten Ca/Mg/Zn-Phasen des Eu_3Mg_{16} -Typs (**C**) [1] sind die Ba-Phasen stöchiometrische 3:16-Verbindungen. Dieser Strukturtyp, der auch hier für binäre Metallide der betrachteten Systeme unbekannt ist, tritt für Zn zwischen 35 und 50.6 % Zn, für Cd dagegen nur im engen Bereich um 66 % Cd auf. Bei weiter erhöhten Cd-Gehalten der Proben bildete sich in einem engen Bereich zwischen 70.0 und 75.4 % Cd der binär ebenfalls nicht auftretende einfache CaCu₅-Typ (**D**) mit deutlich weniger stark kondensierten M_4 -Tetraedern. Vom CaCu₅-Typ läßt sich durch Ersatz von $\frac{1}{3}$ der A-Ionen durch Mg₂-Hanteln der rhomboedrischen Th₂Zn₁₇-Typ (**E**) ableiten, dessen Phasenbreite und Mg/Cd-bzw. Mg/Zn-Elementverteilung – ausgehend von der neu verfeinerten Randphase Ba₂Mg₁₇ – ebenso untersucht wurde wie die des tetragonalen **BaCd₁₁-Typs (F**).

- [1] K. Köhler, C. Röhr, Acta Cryst. A75, e424 (2019).
- [2] F.-E. Wang, F. A. Kanda, C. R. Miskell, A. J. King, Acta Cryst. 18, 24-31 (1965).
- [3] J. Erassme, T. Brauers, H. Lueken, J. Less-Common Met. 137, 155-161 (1988).
- [4] K. Köhler, C. Röhr, Z. Kristallogr. Suppl. 39, 75 (2021).
- [5] K. Köhler, C. Röhr, Z. Anorg. Allg. Chem. (in Vorbereitung)