

The European Network on Neutron Techniques Standardization for Structural Integrity

Numerical activities for the NeT Task Groups

23/11/22

L. Depradeux EC2-Modelisation

lionel.depradeux@ec2-modelisation.fr www.ec2-modelisation.fr

November 23th 2022

Réf : NET_Workshop_nov2022_A

Lionel DEPRADEUX

EC2 presentation

- Consultancy company, created in 1998 in collaboration with INSA Lyon laboratories, aiming at responding to the requirements of industrial or academic partners in applied research fields.
- Thermal and mechanical numerical modeling (static / dynamic / linear and non-linear) and scientific software development
- Fields of expertise : Shell Buckling, Numerical Welding Simulation, Civil Engineering, Dynamic calculations...

FE Codes : Abaqus, ANSYS, Code_Aster

Customers : Energy, Naval, industry...

EC2 activities in the field of Weld Numerical Simulation

- Thermal-metallurgical-mechanical simulations
- Residual stresses and distortion calculation
- Post-weld heat treatment simulation
- Post-weld Fracture mechanics/Flaw analysis
- Additive manufacturing simulation

EC2 shows interest in NET TG work

- Access to a great amount of experimental data, especially material data and residual stresses measurements
- Benefit from Feedback from Experts network / both on simulation & measurements
- State-of-the art update + networking
- Many Benchmarks to validate the simulations → enhancement and validation of modelling strategies :

300 MPa

0 MPa

-150 MPa

300 MPa

test 3B

test 3B

t = 60 ; R/t = 100

t = 60 ; R/t = 100

Axial residual stresses

Hoop residual stresses

- develop and validate simplified methods
- Perform parametric studies so as to identify important aspects in simulations

 \rightarrow Global Enhancement of EC2 skills in the field of numerical simulation of welding

EC2 participation to NET Task Groups

- NET TG4 : 316L plate with a three pass "slot" weld
- NET TG6 : Alloy 600 with a three pass "slot" weld made with Alloy 82 consumables
- NET TG8 : 18MnD5 with a five pass "slot" weld made with Alloy 52 consumables (welding repair issues)
- NET TG9 : Additive manufacturing TG

Main scope of the simulations conducted on the NET TG

- Identify "Best estimate" simulation, accuracy and limitation
- Parametric studies to identify predominant parameters of phenomena
- Develop enhanced models and methodologies
- FE Code benchmarking (Abaqus / Code_Aster)

Mesh detail

B3 = 4.98mm

Detail of the groove geometry

C3

C2]

C1

NET TG 4 :

NET TG 4 experiment :

- Plate 194 × 150 × 18
- Slot 80 mm long ; 6 mm deep
- 316L austenitic steel
- GTAW 3 weld passes
- E ~ 10 to 15 kJ/cm ; V = 1.27mm/s

Measurements : (NET Partners)

- Temperature (thermocouples)
- Macrography / Hardness / metallurgy
- Residual stresses
- Distortion

EC2 simulation

- Half Plate modeled
- Full 3D thermal and mechanical model
- Residual stresses computation
- Comparison of various EP & VP constitutive equations for 316L material

L. DEPRADEUX, R. COQUARD, "Influence of viscoplasticity, hardening, and annealing effects during the welding of a three-pass slot weld (NET-TG4 Round Robin)", int. Journal of pres. Vessel & Piping 164 (2018) 39-54

316L austenitic steel (Base & Weld)

NET TG 6 :

NET TG6 experiment :

- Plate 200 × 150 × 12
- Slot 76 mm long ; 5 mm deep
- Base metal Alloy 600
- GTAW 3 weld passes
- Weld metal alloy 182
- E ~ 20 kJ/cm ; V = 1.166mm/s

Detail of the groove geometry

Measurements : (NET Partners)

- Temperature (thermocouples)
- Macrography / Hardness / metallurgy
- Residual stresses
- Distortion

EC2 simulation

- Half Plate modeled
- Full 3D thermal and mechanical model
- Residual stresses computation
- Comparison of 2 EP constitutive equations for Alloy 600 & 182

Alloy 600 (base) Alloy 182 (Weld)

NET TG 8 :

NET TG8 experiment :

- Plate 18MND5
- Weld Inco 52
- 5 Weld passes
- Post-Weld heat treatment

Measurements : (NET Partners, ongoing)

- Temperature (thermocouples)
- Macrography / Hardness / metallurgy
- Residual stresses
- Distortion

EC2 simulation

- Half Plate modeled
- "2,5D" thermal and mechanical model (w moving heat source)
- Residual stresses computation

"2,5D" simul. :

- Intermediate between 2D and full 3D computation
- Less severe restraint in the weld direction
- "arbitrary" length in the weld direction
- Only the center section is analyzed

18MnD5 (base) Alloy 52 (weld)

NET TG(9) / additive manufacturing :

EC2 simulation

- Half Plate modeled
- "2,5D" thermal and mechanical model (w moving heat source)
- Residual stresses computation
- Support Plate distortion

- Material : 316L (substate & deposited Wall)
- 5 to 10 layers
- 1st layer : I=108 A ; U = 13.2 A (averaged)
- Other layers : I=99 A ; U = 13 A (averaged)
- Welding speed = 0.42m/min = 7mm/Sec
- Travel time 11.43 sec (for 80mm)
- Time between layer hyp. 36,5 sec
- Total pass time=48sec.
- Filler wire 1.2mm

Measurements : (NET Partners)

- Temperature (thermocouples)
- Residual stresses
- Distortion

316L austenitic steel (Base & Weld)

General strategy / Main features of the simulation (all TGs) :

- Code_Aster (mainly) and/or Abaqus simul. (NET TG9)
- Uncoupled thermo-(metallurgical)-mecanical simul.
- Full 3D simulation or "2,5D" simulation with moving heat source (avoid severe restraint in the weld direction due to 2D-cross section assumption)

"Classical" Weld numerical simulation hypothesis

- No thermo-fluids in the Weld pool \rightarrow Equivalent mathematical heat source model
- Moving heat source (ellipsoidal/triangle) / parameters adjusted from Macros +TCs measurements
- EP or EVP mechanical constitutive equ.
- Bead by bead deposition
- "Birth element" for thermal approach / "Quiet elements" (E~0) for mechanical approach

Specific Model Development & Enhancement

- High T° annealing implementation for 316L & Inconel Alloy
- Tempering effects for ferritic material

Known Key points of the simulation (all TGs)

- Heat source model Calibration → Calibration against TCs measurements and macrography
- Mechanical Constitutive equation & material data → Calibration against data provided within NET

Other points that have revealed critical :

- Mixed hardening characteristics (austenitic steel / Nickel based alloy) → importance of cyclic data
- Handling of progressive annealing at high T° (austenitic steel / Nickel based alloy)
- Phases transformations and mechanical consequences (Ferritic steel / 18MnD5)

Not clearly established (from EC2 point of view) :

- Thermo-fluid phenomena in the weld pool \rightarrow Weld pool shape prediction ?
- Viscous effects (weak effect on welding RS ? But very important for Heat treatment simulation)
- Tempering effects during welding (Ferritic steel / 18MnD5)
- Material deposition modelling strategy (especially for additive manufacturing)

Heat source Model choice & Calibration

J. Goldak ellipsoidal model

$$q(x, y, z) = Q_0 \cdot \frac{6\sqrt{3} \cdot f_{\xi}}{a_{\xi} \cdot b \cdot c \cdot \pi^{3/2}} \exp(\frac{-3x^2}{a_{\xi}^2}) \cdot \exp(\frac{-3y^2}{b^2}) \cdot \exp(\frac{-3z^2}{c^2})$$

avec $\xi = f$ our selon que x est positif ou négatif et $f_f + f_f = 2$

$$f_r = \frac{2a_r}{a_r + a_r}$$
 et $f_r = \frac{2a_r}{a_r + a_r}$

Classical heat source model

- Power parameter : Q0, V
- geometrical param. af, ar, b,c
- → Reliable but more complex to implement & calibrate

Simplified heat source model(s)

- Power parameter : Q0, V
- geometrical param. S, L
- → Easier to calibrate
- → Generally sufficient

Ex: NET TG 4

Ex: NET TG 6

MANA TER - SIMIA 12/13 MALE 15/12 -T2 +H0 (0) Theme (1) Fig exp (t) TIL sig []] - T12 eag [1] 130 exp [1] -15 -04 (2) T12 exp [1] 12 ma (2) T11 emp (2)

-Tel

Tc2

-Tell

-To4 -145 -Tell

-Tc8 Test.

-TeIO

- \rightarrow Good agreement between measurment & simul.
- \rightarrow Thermal approach is well validated
- \rightarrow Possible enhancement : weld pool shape prediction (thermofluids effects)

180

200

η = [0.7 – 0.9]

- - TC2 - - - TC3 - - - TC6 - - - TC7 - - - TC8

18MND5 ZAT

- 1.0e+00

- 0.8

- 0.6

- 0.4

- 0.2

-0.0e+00

1200

Material model Calibration : austenitic steel & Nickel based alloy

- 316L : EVP isot, Prager, Chaboche
- Inco 600 : Prager, Chaboche
- Inco 182 : Prager, Chaboche
- A508/18MnD5 : EP cine ou isot

Available Code_Aster models :

Isot/cine/mixt EP Prager model

 $f(\sigma_{ij}) = (\sigma - \chi)^{VM} - R(p) \le 0$ $R = R(p) = R(\varepsilon_p{}^p) \qquad \chi = c \varepsilon_p{}^p$ If R=H.p(linear hardening) $\begin{bmatrix} C = 0 \rightarrow pure \text{ isotropic} \\ C = 2H/3 \rightarrow pure \text{ cinematic} \\ 0 < C < 2H/3 \rightarrow mixed \end{bmatrix}$

EP Chaboche type model

```
F(\sigma, R, X) = (\sigma - X)^{VM} - R(p) \le 0

X = \frac{2}{3}C(p).\alpha \qquad \dot{\alpha} = \dot{\varepsilon}^{p} - \gamma(p).\alpha.\dot{p}

R(p) = R_{\infty} + [R_{0} - R_{\infty}]e^{-bp}

C(p) = C^{\infty} (1 + [k-1]e^{-wp})

\gamma_{1}(p) = \gamma^{0} (\alpha_{\infty} + (1 - \alpha_{\infty})e^{-bp})
```

EVP model

$$f(\sigma, r, T) = \sigma^{VM} - R(r, T) - \sigma_s \le 0$$

$$\dot{\varepsilon}_{ij}^{vp} = \frac{3}{2} \dot{p} \frac{S_{ij}}{\sigma^{VM}} \qquad \dot{p} = \left(\frac{\left\langle\sigma^{VM} - R(r) - \sigma_s\right\rangle}{\mu}\right)^n$$

$$\begin{cases} R = R(r).r \\ \dot{r} = \dot{p} - (Cr)^m \end{cases}$$

(viscous annealing)

+ separated annealing : (internal variables =f(T, t))

Material model Calibration : ferritic steel / 18MnD5

EP model with phase transformation :

Differential dilatation

 $\varepsilon^{thm}(Z,T) = Z_{\gamma} \left[\alpha_{\alpha}(T - T_{ref}) - (1 - Z_{ref}) \Delta \varepsilon_{\alpha\gamma}^{T_{ref}} \right] + Z_{\alpha} \left[\alpha_{\alpha}(T - T_{ref}) + Z_{ref} \Delta \varepsilon_{\alpha\gamma}^{T_{ref}} \right]$

Multiphasic plastic behavior

 $f(\sigma, r, T) = \sigma^{V\!M} - R(r, T) - \sigma_{\varsigma} \leq 0 \qquad \sigma_{\gamma}(T, Z_{\alpha}) = (1 - f(Z_{\alpha}))\sigma_{\gamma\gamma} + f(Z_{\alpha})\sigma_{\gamma\alpha}$

• Transformed induced plasticity (TRIP)

$$\underline{\dot{\varepsilon}}^{pt} = \frac{3}{2} \underbrace{S}_{i-1}^{i-4} K_i F_i'(Z_\gamma) \dot{Z}_i$$

Viscous Annealing

 $\begin{cases} R = R(r).r \\ \dot{r} = \dot{p} - (Cr)^m \end{cases}$

- → Generic actual Code_Aster model
- → Purely isotropic or Kinematic hardening model only
- → Calibration data from literature [Vincent], [Petit], [Martinez]...

heating

600

400

200

300

Calibration from protocol data

- Inverse method from cyclic data ٠
- "Satoh" tests validation ([Akrivos&al.], [Depradeux], [Vincent])

-EXP 600°C

Strain (%)

316L

23/11/2022

ŝ 107

50

300

-400

0,015 0,01

0,005

0

Strain

0,005

10,0 0,015

Strain (%)

- - cal 50

Material model validation : "Satoh tests"

Computed stress evolution with T[°] during welding : at the center of the plate

Material model validation : "Satoh tests"

23/11/2022

- → Strong effects of cyclic hardening
- → Strong interaction with annealing effects
- \rightarrow VP effects seems weak on RS

X (mm) - Transverse direction

Residual stresses - Line B2 - transverse cross section

EVP

phase2

1000

. rand

3.808.02

E. 6189-C D.008100

TRIBUC

1.1.64

15.

1.4

491

10

1.2 4.10

(Street

1,100,02

0.4.101-00

1.000 1.316.00

I. b. Kint

40.

NET TG 6 : Main conclusions

→ Similar conclusions to NET TG4

BD

Line

B2

Line

- \rightarrow Strong influences of mixed hardening and annealing
- \rightarrow Prager model appears interesting since Chaboche model leads to numerical difficulties

- Tempering influence on peak stresses
- → Still ongoing analyses

NET TG additive manufacturing : Main conclusions at this step

Abagus kine

-Aster isot -Aster mixt

—Aster kine

800

Main General conclusions :

- Thermal simulation appears mature enough for reasonably satisfactory results ; However, weld pool shape precise prediction without any calibration data is still difficult (Weld pool convection due to Marangoni effect...)
- For austenitic steel and Nickel based alloys, mixed hardening and annealing parameters are dominating for RS
 prediction ; Effects are well understood, but correct material calibration is not straightforward
- Metallurgical phase transformations in ferritic steel have huge effects on RS; if taken into account in the model, it leads to reasonably satisfactory results, yet some phenomena need to be clarified (TRIP influence,
- Geometry simplification assumptions as "2,5D" or "macro-bead" techniques are relevant in most cases

Perspectives of enhancement

- Viscous effects influence seems weak on RS prediction ; but has to be confirmed on different cases as it is difficult to unpack the effects of annealing, hardening and VP effects
- Self tempering effect in ferritic steels needs further understanding
- Mixed Hardening and annealing models calibration for ferritic steels require some improvement
- Material activation strategy effects on RS and distortion (especially for additive manufacturing) have to be further studied and clarified

23/11/2022