Wire + arc additive manufacturing : the challenge of distortions and residual stresses.

Issam Bendaoud, Cyril Bordreuil, Frédéric Deschaux-Beaume, <u>Sébastien</u> <u>Rouquette</u> and Fabien Soulié « Welding and Joining » team LMGC, Univ. Montpellier, CNRS, France Contact : sebastien.rouquette@umontpellier.fr

20th anniversary NeT workshop, 23rd November 2022

What is WAAM ?

Why measuring residual stresses ?

How do we measure residual stresses ?

Neutron stress measurements made on our specimens

Outcomes

What is WAAM ?

Simplified manufacturing procedure

[1] Diourte A, PhD thesis, Génération et optimisation de trajectoire dans la fabrication additive par soudage à l'arc, Institut Clément Ader, Université de Toulouse 3, 2021.

Advantages:

- Require less raw material (vs traditional machining)
- ✓ Optimisation of part geometry for reducing part weigh and/or improving mechanical strength
- ✓ high deposition rate & possibility to make large mechanical parts (>0,5 m)^[2]

Drawbacks:

- **×** Microstructure with large grains
- **×** Distortions
- × Residual stresses.

Reduce mechanical strength

Our Objectives: (C. Cambon PhD Thesis 2017-2021)

- → Set-up a WAAM benchmark:
 - → For studying the effects of operating parameters
 - → For establishing a simple thermal-mechanical simulation

[2] D. Ding, Z. Pan, D. Cuiuri, H.L. School. A multi-bead overlapping model for robotic wire and arc additive manufacturing, *Robotics and Computer-Integrated Manufacturing* 31 (2015).

Why measuring residual stresses?

« Residual stresses are stresses that would exist in a body if all external loads were removed. ... Residual stresses that exist in a body that has previously been subjected to nonuniform temperature changes, such as those during welding, are often called thermal stresses. »^[3]

High residual tensile stresses can cause:

- hydrogen-induced cracking,
- reduce cycle to failure tests (due to cracking)
- stress corrosion cracking.

Post weld heat treatment is often used to produce stress relief.

[3] S. KOU. Welding Metallurgy, 2nd edition, Wiley interscience, ISBN 0-471-43491-4 (2003).

How to measure residual stresses?

Few techniques:

- Destructives: deep hole drilling, contour method
- Non destructives: strain gauges, x-ray diffraction, <u>neutron diffraction</u>, ...

neutron diffraction, Taylor & Francis (2004).

SS316L specimens built with GMAW-CMT welding source

Parameters	Set 1 layer 1	Set 1 layer n	
U (V)	13.5	13	
I (A)	119	99	
S_w (m/s)	0.007	0.007	
E(J/mm)	183.6	147.1	
S_f (m/min)	3.2	2.5	

Displacement

What about the residual stresses?

Measured residual stresses at Helmotz Berlin Zentrum, Berlin (thanks to Robert Wimpory, member of NeT).

Measured (Θ_{ND} , Θ_{LD} , Θ_{TD}) + plane stress ($\sigma_{\text{ND}} = 0$) gives $\Theta_0 => \varepsilon_{\text{ND}}$, ε_{LD} , ε_{TD} and $\sigma_{\text{LD} \&} \sigma_{\text{TD}}$

Neutron diffraction experimental parameters:

Crystal plane	wavelength	20 angle	GV – LD (mm)	GV_TD (mm)	GV – ND (mm)
Fe-311	1.471 Å	85.587°	2x2x2	2x2x2	10x2x2

Measured residual stresses at HBZ, Germany.

<u>Zone I:</u> place of the electrical arc and metal transfer Local melting of the substrate => highest temperatures => high temperature gradients => strong thermal compression => zone II. During the solidification and cooling the melted pool shrinks and it leads to high tensile stresses in the 1st layer.

Zone II: compression stress due to the dilatation of zone I during the heating. The thermal stress was enough to plasticize the material.

Zone III: due to shrinkage of Zone I (during cooling) the substrate bent slightly upward leading to tensile stress.

9

Camille Cambon, Issam Bendaoud, Sébastien Rouquette et Fabien Soulié. A WAAM benchmark: From process parameters to thermal effects on weld pool shape, microstructure and residual stresses published in Materials today communications V33 (2022).

Outcomes

- Operational WAAM mock-up
- Online monitoring of the building procedure (electric signals, temperature, weld pool, displacement)
- Lots of neutron diffraction measurements from other facilities: ILL (Grenoble, France) and ISIS (Didcot, UK)... still under processing

Perspectives

- Investigate the effect of other operating parameters such as dwell time, path deposition strategy to mitigate the residual stresses and microstructure.
- Characterization of the specimen's mechanical properties.
- Seeking for research collaboration (e.g. PhD, numerical simulations ...)

This research work is related to Net TG9 "Additive Manufacturing". We thank EDF (Vincent Robin & Josselin Delmas) for connecting us. => valuable scientific exchanges both on numerical and experimental sides, => thanks to R. Wimpory, we got our 1st residual stress measurements in 2020, => we are keen on sharing all the data (published) on our various specimens.

Thank you for your attention

20th anniversary NeT workshop, 23rd November 2022