A buffer-gas trap for the NEPOMUC positron beam: optimization studies with electrons

Adam Deller *^{1,2}, C. W. Rogge^{1,3}, S. Desopo², E. V. Stenson¹, M. R. Stoneking^{1,4}, T. Sunn Pedersen^{1,5}, J. R. Danielson², C. M. Surko², and C. Hugenschmidt³.

¹Max-Planck-Institut für Plasmaphysik, ²University of California San Diego, ³Technische Universität München, ⁴Lawrence University, ⁵University of Greifswald

& the APEX collaboration

INTRODUCTION

Buffer-gas traps (BGT) use inelastic interactions with nitrogen molecules to efficiently capture positrons from a continuous source [1]. A BGT has been assembled at IPP Garching [2] and optimized using an electron beam with a similar intensity and energy spread to the remoderated NEPOMUC positron beam [3, 4]. Bunches of electrons were ejected from the BGT at rates of between 0.1 to 10 Hz in 100 ns-long pulses. The bunches were recaptured and accumulated in a separate Penning trap to produce a non-neutral plasma of $N > 10^8$ electrons. The BGT and accumulator are vital components of APEX (A Positron Electron eXperiment), which aims to produce a low-energy electron-positron pair plasma [5].

MAX-PLANCK-INSTITUT FÜR PLASMAPHYSIK

BGT SYSTEM

POSITRONS

NEPOMUC: Thermal neutrons generated by FRM II impinge on a cadmium target to produce gamma rays and instigate pair production of electrons and positrons in platinum foils. The positrons are extracted and then remoderated to ~20 eV [3, 4].

ELECTRONS

An electron beam with a comparable

ACCUMULATOR

SUMMARY

A BGT system has been successfully optimized using electrons [2]. We plan to install the device on the NEPOMUC in 2024 and hope to accumulate plasmas containing $N = 10^8$ positrons every 30s. The device is a crucial component of the APEX project [5]. The low-energy trapbased beam will also expand the capabilities of NEPOMUC. Anticipated

APEX pair plasma

experiment

EXPECTED PERFORMANCE

	e+/s	E _I [eV]	ΔE_{\parallel} [eV]	ΔE_{\perp} [eV]	N _{e+} /30 s
Primary beam	5×10 ⁸	1000	10	4	1.5×10 ⁸
W remoderated	3×10 ⁷	20	3	1.3	7.5×10 ⁷
SiC remoderated [7]	3×10 ⁸	20	1	0.5	9.0×10 ⁸

REFERENCES

T. J. Murphy, et al. (1992) Phys. Rev. A 46, 5696
A. Deller, et. al. (2023) J. Plasma Phys. (accepted)
C. Hugenschmidt, et al. (2012) New J. Phys. 14 055027
J. Horn-Stanja, et al. (2016) Nucl. Instrum. Meth. A 827, 52
M. Stoneking, et al. (2020) J. Plasma Phys. 86, 15586061
L. V. Jørgensen, et al. (2005) Phys. Rev. Lett. 95, 025002
J. Störmer, et al. (1996) J. Phys.: Condens. Matter 8 L89
C. Hugenschmidt (2016) Surf. Sci. Reports 71, 547
D. Cassidy, et al. (2005) Phys. Rev. Lett. 95, 195006

*Corresponding author: adam.deller@ipp.mpg.de This work has been carried out with support from the U. S. DOE (DE-SC0019271) and the UCSD Foundation; The work has also received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement No. 741322); and the Deutsche Forschungsgemeinschaft, (Hu 978/15-1 and Sa 2788/2-1). The views and opinions expressed herein do not necessarily reflect those of the European Commission. The NEPOMUC positron beam facility is operated by FRM II at the Heinz Maier-Leibnitz Zentrum (MLZ), Garching, Germany.

