Development of an Extensional Flow SANS Sample Environment for Polymer Solutions

Dr. Matthew Wade

26/11/23

Capillary Breakup Extensional Rheometer

- Standing capillary between two rapidly separated plates with high-speed camera
 - Surface tension + gravity serve as dominating forces
 - Approximation of extensional flow
 - Industrially relevant processes Ink-jet printing, Direct ink-writing

Capillary Breakup Extensional Rheometer

- Extensional properties from transient filament and breakup
 - Minimum radius as a function of time, $r_{min}(t)$
 - Apparent extensional viscosity
 - Extensional relaxation time
- Ongoing questions involving microscale contributions
 - Impact of small quantities of high MW polymer on capillary formation

CaBER Sample Environment for KWS-II

- Prototype developed as part of GNeuS fellowship
 - Linear drive controlled by Beckhoff PLC
 - Keyence TM-X5000 to capture and process images (loaned for proof of concept)
 - Partially sealed sample environment
 - Syringe loaded sample plate
- System based on custom CaBER instrument
 - Clasen group from K.U. Leuven

Considerations for CaBER-SANS Measures

- CaBER is inherently transient measurement
 - Transient SANS methods and binning
 - Dependent on material (100 ms to 2-3 s)
 - Automation repeat test with limited human intervention
 - Repeatability Comparable flow conditions
- CaBER is usually a "once on per loading" measure
 - Significant changes over 1.5 hrs
 - Evaporation
 - Sample falling off geometry
 - Loading effects

Repeatability - Controlled Environment 400 Base Conditions 350 Solvent Trap Solvent Trap + Sponge (se) 300 **3D-Printed Container** Time (Fracture 120 120 150 - And 100 50 1000 4000 2000 3000 5000 0 T = 0 minT = 75 min Time (s)

- Cotton saturated with water sealed with sample in CaBER
- Total test time = 1.5 hrs (longer times are possible)

JÜLICH

Forschungszentrum

• Relatively stable compared to prior conditions (swelling instead of evaporation)

Sample has swollen by end of test.

Proof of Concept at ILL D-22

- Scattering data collected 2 weeks ago
 - Significant reflections where features expected
 - Thin vertical beam centered on capillary
- Data are still being organized and processed
 - Notable changes in WLM at short times
 - Slight changes in PEO solutions
- CaBER results highlight changes
 - WLMs exhibit significant variation
 - At short times data are similar
 - Evaporation, temperature change?

Future Iterations of CaBER-SANS

- Overhaul of sample chamber
 - Humidity and temperature control
 - Evaporation stabilized specific humidities and temperatures
 - Depending on material 80% humid or more
 - Larger volume
 - Larger windows for lower scattering angles
 - Easier access to internal plates
 - Aluminum instead of copper
- Proof of concept tests got lucky
 - Consistent weather (rain)
 - Stable temperature

Ongoing Development of CaBER SANS

- CaBER is not an easy test to run on a beamline
 - Rapid, time-resolved phenomena
 - Challenges with sample stability
- Prototype assembled and tested on D-22, ILL
 - Data analysis are ongoing, but promising
 - CaBER results highlight variation in sample behavior
- Sample chamber overhaul
 - More accessible
 - Temperature and humidity control
 - Larger volume

Acknowledgements

- GNeuS Supervisors
 - Dr. Aurel Radulescu
 - Prof. Christian Clasen
 - Prof. Pavlik Lettinga
 - Dr. Giovanni Vleminckx
- SMaRT Research Group
 - Luca Passaro

GNeuS Coordinators

•

- Dr. Anja Vananroye
- Dr. Flavio Carsughi
 - Dr. Mayada Abdelgalil

Development of an Extensional Flow SANS Sample Environment for Polymer Solutions

Dr. Matthew Wade

26/11/23

Automation – Triggering and Control Scheme

JÜLICH

Forschungszentrum

Repeat time limited by time to reset piston and download data or raw images

t_{exp}

Putting a CaBER Instrument on a Beamline

Rep

Rep n

- CaBER is inherently transient
- Automate Repeat test with limited human intervention
 - Limited time at beamlines
 - Sync multiple components
 - Beamline and CaBER
 - CaBER components

- Consistent CaBER tests Ensure comparable flow conditions
 - Changes in sample
 - Volume
 - Composition
 - Changes in loading conditions
 - Volume
 - Edge effects

Automating CaBER – TwinCAT Looping Expt.

- Loops "experiment" and "set gap" steps
 - Wait time for download (manually entered)
 - Run until:
 - Set number of iterations
 - Time limit

Forschungszentrum

- Option to record time when "experiment" started
- Writing files on local machine from PLC
 - Specify sNetid as IP for local machine (as seen by PLC
 - Default value writes to PLC (inaccessible)
- Tests are completely automated!

Repeatability – Sealed Environment

- Total test time = 75 minutes
- Significantly more stable than prior tests
- Setting up sealed environment requires partial disassembly of CaBER (modify of sample chamber?)

Future Work on CaBER-SANS

- Processing ~2 TB of data from secondment
 - Stability over longer times (up to 5 hrs)
 - Alternate compositions and materials
 - "Bulk" geometries
 - Impact of loading conditions
 - Wetting effects
 - Solvent evaporation/absorption

- Temporarily moving the CaBER setup + constructing new CaBER setup in Garching
 - Easier/cheaper to transport by car
 - Exchanging U.S. license for German license (Illinois and Germany have reciprocity agreement)
 - Replacement for highspeed camera
 - Camera for CaBER in Leuven also used on other instruments
 - Optical micrometer from Keyence (15-20k €)
 - Lower frame rate high-speed camera from Chronos (8-10k € with lens)

t_{exp}

Putting a CaBER Instrument on a Beamline

Rep

Rep n

- CaBER is inherently transient
- Automate Repeat test with limited human intervention
 - Limited time on beamline
 - Sync multiple components
 - Beamline and CaBER
 - CaBER components

Consistent CaBER tests – Ensure comparable flow conditions

- Changes in sample
 - Volume
 - Composition
- Changes in loading conditions
 - Volume
 - Edge effects

Automating CaBER – TwinCAT Looping Expt.

- Loops "experiment" and "set gap" steps
 - Wait time for download (manually entered)
 - Run until:
 - Set number of iterations
 - Time limit
 - Option to record time when "experiment" started
- Writing files on local machine from PLC
 - Specify sNetid as IP for local machine (as seen by PLC
 - Default value writes to PLC (inaccessible)
- Tests are completely automated as of last week!!

tTimeout *TIME*

TwinCAT Program Interface

Consistent Tests – Sample Changes with Time

- CaBER experiments repeated by hand
 - One loading 8 MDa PEO + 35 kDa PEO solution
 - 33 tests over 45 minutes
- Solvent evaporation is a significant issue
 - Significant changes in material behavior
 - Changes to loading of material
- Possible solutions
 - Solvent trap (modified liquid liquid cell)
 - Solvent bath near geometry
 - Higher boiling point solvent

20

Consistent Tests – (Re)Loading Effects

- Loading has a significant impact on CaBER
 - Droplet volume
 - Centering of droplet
 - Edge wetting
- Typically run multiple tests with fresh loadings
 - Median or average as representative data set
- Possible solutions
 - Featured geometries consistent pinning/wetting
 - Dip and pull from bulk solution
- Challenges deconvoluting from evaporation

