

Novel method for studying hydrogen storage process in the nanometer length scale using count rate of neutrons scattered at a small angle and probabilistic structure generation

Arnab Majumdar, Martin Müller, Sebastian Busch

Agenda

1	Scientific problem	
2	Calculation of neutron count rate from simulation	
3	Structure generation using probabilistic simulation	

Focus

Hydrogen storage using amide based complex hydrides

Engineering length scale: Volumetry measurement

Nanometer length scale: Small Angle Neutron Scattering (SANS) measurement

Nanometer length scale: In situ SANS measurement

Complementary use of simulations and SANS experiments

Agenda

1	Scientific problem
2	Calculation of neutron count rate from simulation
3	Structure generation using probabilistic simulation

Q - clean method: Removal of finite size effect

Key publications: SANS measurement: J. Trewhella et al.*

Calculation of diffraction pattern: A. Majumdar et al.**

Numerical method: Calculation of SANS pattern from SLD distribution

Calculation of neutron count rate per unit flux or effective cross-section

Sassena - Software development

Computation time (Base configuration)

Gitlab project (Sassena)

Scalability (N cores) = Computation time (N cores) ÷ Computation time (1 core)

05.12.2024

Sassena: B. Lindner et. al. DOI: doi:10.1016/j.cpc.2012.02.010, A. Majumdar et al. DOI: https://doi.org/10.3390/ijms25031547, Liquidlib: N.Walter et. al. DOI: https://doi.org/10.1016/j.cpc.2018.03.005

Agenda

2 Calculation of neutron count rate from simulation	1	Scientific problem
2 Ctructure generation using probabilistic simulation	2	Calculation of neutron count rate from simulation
3 Structure generation using probabilistic simulation	3	Structure generation using probabilistic simulation

Probabilistic simulation: Unknown parameters for generation of structures

Probabilistic simulation: Optimization of unknown parameters

Values of unknowns after optimization

- 33% of BH_4^{-1} subjected to H-D exchange
- 33.33% probability of having H_2 / D_2 in structures generated for desorbed states

Probabilistic simulation: Chemical evolution of generated structures

Probabilistic simulation: SLD distribution of generated structures

Nanometer length scale: Neutron count rate vs effective cross-section

Effect of nanoscopic phenomena on engineering length scale

Hydrogen absorption 4

Thank you

Backup

Bigger length scale: Contrast between storage material and gas around it

Bigger length scale: Chemical diffusion in a single grain

Bigger length scale: Neutron count rate vs effective cross-section

Bigger length scale: Chemical diffusion in a single grain