Neutron scattering, facilities and instrumentation

Robert Georgii

Literature

Neutron scattering: A Primer by Roger Pynn
Los Alamos Science (1990)
http://library.lanl.gov/cgi-bin/getfile?19-01.pdf

Elementary Scattering Theory: For X-ray and neutron users D.S. Sivia (2011)

St John's College, Oxford ISBN 978-0-19-922867-6

Properties of the neutron

- Mass: $\mathrm{m}_{\mathrm{n}}=1.675 \times 10^{-27} \mathrm{~kg}$
- Charge = 0
- Spin = $1 / 2$
- Magnetic moment: $\mathrm{m}_{\mathrm{n}}=-1.913 \mu_{\mathrm{B}}$
- Velocity v , kinetic energy E , wavelength λ, wavevector k , moderator temperature T

$$
E=\frac{1}{2} \mathrm{~m} v^{2}=k_{B} T=\left(\frac{n k}{2 \pi}\right)^{2} / 2 m, \text { where } k=2 \pi / \lambda=m v / \frac{h}{2 \pi}
$$

	Energy (meV)	Temperature (K)	Wavelength (\mathbb{A})
cold	$0.1-10$	$1-120$	$4-30$
thermal	$5-100$	$60-1000$	$1-4$
hot	$100-500$	$1000-6000$	$0.4-1$

Nobel prize 1994 to Shull and Brockhouse

Neutrons see

Where atoms are

How atoms move

Why we use neutrons

- Advantages:

- Wavelength is in the order of atomic distances $\left(\approx 1 \AA=10^{-10} \mathrm{~m}\right)$
- Energy is in the order of the kinetic energy of atoms ($\approx \mathrm{meV}$) and much smaller as the binding energy ($\approx \mathrm{eV}$)
- Large penetration depth since uncharged particles
- Scattering is dependent on the isotopic composition (Difference H,D)
- Neutrons have a magnetic Moment, they "see" B-fields
- Disadvantages:
- Neutron sources have a very low Brilliance
- Neutrons are difficult to detect, guide and to shield

Comparison of different probes

Neutrons:

- no systematic A-dependence
- Specific strongly absorbing isotopes: B, Cd, Sm, Gd
- Large difference for H/D

Scattering versus imaging measurements

- Imaging techniques are done in real space, like using a microscope
- Scattering techniques work on an ensemble of objects in reciprocal space
- Both methods are complementary

Foam in the sub micrometre range:
Picture from a microscope

Interaction mechanism

Interaction of neutrons

- only with the nucleus (point interaction $\sim \mathrm{fm}$)
- with unpaired electrons
(magnetic Dipol-Dipol interaction)

Fission: Chain reaction

Spallation: Proton accelerator + heavy metal target

ESS: The world most powerful accelerator for the highest neutron flux
Accelerator for protons: 2 GeV and 5 mA

Tungsten target, He cooled

Fission versus Spallation

	Fission	Spallation
Energy per neutron	180 MeV	20 MeV
Neutron spectrum	Maxwellian	long tail of hot neutrons
Wavelength resolution	can be adopted to needs	constant
Time structure	continuous	pulsed
Stability	very stable	depended on accelerator
Problems	Nuclear reactor	much higher n energies
Building costs	About 0.5 Billion $€$	About 2 Billion $€$
Running costs	Current for pumps	Current for accelerator Further improvements
	Saturation reached	Higher accelerator energy

Reactor spectrum

European Landscape of Neutron User Facilities

International Neutron Sources

	ILL Grenoble (F)		ISIS Chilton (GB)	FRM II	ESS (S)	SNS Oak Ridge (USA)
$\Phi\left[\mathrm{cm}^{-2} \mathrm{~s}^{-1}\right]$	10^{15}	2×10^{16}	4.5×10^{15}	7×10^{14}	1.5×10^{17}	8×10^{16}
$\bar{\Phi}\left[\mathrm{cm}^{-2} \mathrm{~s}^{-1}\right]$	10^{15}	2×10^{13}	7×10^{12}	7×10^{14}	0.6×10^{15}	6×10^{13}
Pulse repetition rate [Hz]	-	5	50	-	14	60
Pulse duration [$\mu \mathrm{s}$]	-	250	30	-	2860	20
P [MW]	57	2	0.2	20	5	2

The Neutron Source FRM II

FRM II: A swimming pool reactor

FRM II: Discharge of a spent fuel element

FRM II: Cooling system

FRM II: The Fuel Element

Cross section: 113 curved fuel plates

Flux maximum 12 cm above fuel element

FRM II: The reactor vessel

FRM II: Cold Source, Hot Source

FRM II: Spectrum of the cold source and hot source

Scattering theory: Cross section

- Flux $\Phi=$ number of incident $\mathrm{n} /\left(\mathrm{s} \mathrm{cm}^{2}\right)$
- Cross section $\sigma=$ number of scattered $n / s / \Phi$
- $\mathrm{d} \sigma / \mathrm{d} \Omega=$ number of scattered $\mathrm{n} / \mathrm{s} / \Phi \mathrm{d} \Omega$

cross section

The effective area presented by a nucleus to an incident neutron. One unit for cross section is the barn, as in "can't hit the side of a barn!"

Attenuation $=e^{-N \sigma d}$
σ in barn: 1 barn $=10^{-24} \mathrm{~cm}^{2}$
$\mathrm{N}=$ Atoms/unit cell
d = thickness

Scattering on a single nucleus

- Strong interaction short range $(\sim 1 \mathrm{fm}) \ll$ neutron wavelength

$$
\Rightarrow \text { scattering is "point like" }
$$

- no absorption
- elastic (no energy transfer, no time dependency)
- b is the scattering length in cm , typical $10^{-12} \mathrm{~cm}$ (can not be calculated, needs to be measured !)
- Differential cross section: $\frac{d \sigma}{d \Omega}=\frac{n u m b e r ~ o f ~ s c a t t e r ~}{n} / \mathrm{s}\left(\frac{|\psi|^{2}}{d \Omega \Phi}=b^{2}\right.$
- Total cross section:

$$
\sigma=4 \pi \mathrm{~b}^{2}
$$

Coherent and incoherent scattering

- Superpostition of all neutron waves: sum over all atoms N :

$$
\psi_{\text {scatter }}=\sum_{i, j=0 . . N} e^{-i \overleftarrow{k}_{0} \bar{R}_{i}}\left[\frac{-b_{j}}{\left|\bar{r}-\bar{R}_{j}\right|} e^{-i \overleftarrow{k_{f}}\left(\bar{r}-\overleftarrow{R}_{j}\right)}\right]
$$

- For neutrons the the scattering length depends on the isotope and the nuclear spin: $b_{i}=\langle b\rangle+\delta b_{i}$
- This gives in the end

Selected values for $\sigma_{\text {coh }}$ and $\sigma_{\text {inc }}$

Nuclide	$\sigma_{\text {coh }}$	$\sigma_{\text {inc }}$	Nuclide	$\sigma_{\text {coh }}$	$\sigma_{\text {inc }}$
${ }^{1} \mathrm{H}$	1.8	80.2	V	0.02	5.0
${ }^{2} \mathrm{H}$	5.6	2.0	Fe	11.5	0.4
C	5.6	0.0	Co	1.0	5.2
O	4.2	0.0	Cu	7.5	0.5
Al	1.5	0.0	${ }^{36} \mathrm{Ar}$	24.9	0.0

- Large difference for H/D which is used for contrast variation
- Al is used for sample environment and beam windows
- V is used as a standard scatter for inelastic scattering

Elastic versus inelastic scattering

Coherent elastic scattering at crystals

Condition for constructive interference:

- \overleftarrow{Q} must be perpendicular to the diffracted wave front
- $\overleftarrow{Q} \cdot\left(\overleftarrow{r}_{j}-\overleftarrow{r}_{k}\right)=Q d=2 \pi n$, where d is the lattice spacing, and n is an integer number
- $Q=\frac{4 \pi}{\lambda} \sin \theta$ is the condition for elastic scattering
\Rightarrow

$$
n \lambda=2 d \sin \theta \text { Bragg's law }
$$

Key Points about Diffraction

- A monochromatic (single λ) neutron beam is diffracted by a single crystal only if specific geometrical conditions are fulfilled
- These conditions can be expressed in several ways:
- Laue's conditions: $\mathbf{Q} \mathbf{a}_{1}=\mathrm{h} ; \mathbf{Q} \mathbf{a}_{2}=\mathrm{k} ; \mathbf{Q} \mathbf{a}_{3}=1$ h, k, and I as integers; a_{i} the translations of the unit cell
- Bragg'sLaw:

$$
2 d_{\mathrm{hk} \mid} \sin \theta=\lambda
$$

- Ewald's construction
- Diffraction tells us about:
-The dimensions of the unit cell
-The symmetry of the crystal
-The positions of atoms within the unit cell
-The extent of thermal vibrations of atoms

Take home message

- Coherent, elastic scattering shows where atoms are (Bragg's law)
- Incoherent, elastic scattering contributes to the background independent of angle
- Coherent, inelastic scattering describes the collective movement of atoms
- Incoherent, inelastic scattering describes diffusion (the self-correlation function of atoms)

Physics explored with neutrons

ILL yellow book

Instruments

- Elastic scattering (Diffractometer)
- Diffractometer (Powder and single crystal)
- Small angle scattering (SANS)
- Reflectometer
- Inelastic scattering (spectrometer, energy transfer meV region)
- Three axis spectrometer
- TOF spectrometer
- Quasielastic scattering (Energy transfer in the mev region)
- Backscattering spectrometer
- Spin-echo spectrometer
- Imaging instruments (direct observation), nuclear and fundamental physics, Positron source, medical applications and irradiation facility

Powder Diffraction

Pulverdiffraktometer SPODI am FRM II

SANS - Resumé

SANS: Diffractometer specialized for small scattering angles

Large correlations in real space
20 to $40000 \AA$

Low \mathbf{Q} small scattering angles $\sim 1 \AA^{-1}$ to $\sim 10^{-4} \AA^{-1}$

SANS - Resolution

$\left.\begin{array}{l}\text { Angular resolution } \\ \text { Monochromaicity } \\ \text { Detector resolution } \\ \text { Gravity }\end{array}\right\}$ Treat as Gaussian distributions: $\left\langle\frac{\delta Q^{2}}{Q^{2}}\right\rangle=\left\langle\frac{\delta \lambda^{2}}{\lambda^{2}}\right\rangle+\left\langle\frac{\cos ^{2} \theta \delta \theta^{2}}{\sin ^{2} \theta}\right\rangle$
$\left.\left\langle\frac{\delta Q^{2}}{Q^{2}}\right\rangle=0.0025+\left\langle\frac{\delta \theta^{2}}{\theta^{2}}\right\rangle \quad \square\right\rangle$ Angular resolution: $\delta \theta \approx \sqrt{\frac{5}{12}} \frac{a}{L}$

What is the largest object SANS can detect (limit small Q)?

$$
\begin{aligned}
& \text { For } a_{1}=a_{2}=a \text { and } L_{1}=L_{2}=L \\
& \square \delta Q \approx \frac{\delta \theta}{\theta_{\text {min }}} Q_{\text {min }} \approx \delta \theta \frac{4 \pi}{\lambda} \approx \frac{2 \pi a}{\lambda L}
\end{aligned}
$$

$$
\text { Largest object: } \frac{2 \pi}{\delta Q}=\frac{\lambda L}{a} \quad \text { On D11, ILL: L=40m, } \lambda=15 \AA \quad \square \mathrm{D} \approx 5 \mu \mathrm{~m}
$$

Reflectometer

Specular reflectometry

Depth profiles
(nuclear and/or magnetic)
Sis substrate

Off-specular (diffuse) scattering
In-plane correlated roughness
Magnetic stripes
Phase separation (polymers)

Glancing incidence diffraction

Ordering in liquid crystals
Atomic structures near surfaces Interactions among nanodots

(1) Neutron beam
(2) Collimator
(3) Monochromator
(4) Sample
(5) Analyser
(6) Detector

PUMA@FRMII

4

- here: keep E_{i} and \mathbf{q} fix and scan $\hbar \omega$ for several q's and temperatures
- cold source: $\lambda \approx 5 \AA$
- monochromator: selects initial energy E_{i}
- sample environment: cryostat and magnets
- analyzer: selects final energy E_{f}
- scattering angle: selects momentum transfer $\mathbf{Q}=\mathbf{G}+\mathbf{q}$
- maps out the dispersion relation $\hbar \omega(\mathbf{q})=E_{i}-E_{f}$

Time of flight spectrometer

Instrument Layout

Energy resolution 2 smmantame $\begin{array}{ll}4 \AA(\text { FWHM } & 199 \mathrm{\mu eV}) \\ 6 \AA(\mathrm{FWHM} & 58 \mathrm{\mu eV}\end{array}$ $\begin{array}{ll}6 \AA(\text { FWHM } & 58 \mu \mathrm{cV}) \\ 8 \AA(\mathrm{AWH} & 24 \mathrm{cV})\end{array}$ $\begin{aligned} 8 \AA(\mathrm{FWHM} & 24 \mathrm{\mu eV}) \\ 10 \AA(\mathrm{FWHM} & 12 \mathrm{\mu eV}\end{aligned}$ $12 \AA($ FWHM $7.5 \mu \mathrm{eV})$

Several atoms: Superposition of scattering waves

- sum over all atoms $\mathrm{N}: \psi_{\text {scatter }}=\sum_{i, j=0 \ldots N} e^{-i \overleftarrow{k}_{0} \bar{R}_{i}}\left[\frac{-b_{j}}{\left|\bar{r}-\overleftarrow{R}_{j}\right|} e^{-i \overleftarrow{k_{f}}\left(\grave{r}-\overleftarrow{R}_{j}\right)}\right]$
- simplify using: $\overleftarrow{Q}=\overleftarrow{k}_{f}-\overleftarrow{k}_{0}$, the scattering vector and
- $r \gg R_{j}$
- gives: $\frac{d \sigma}{d \Omega}=\sum_{i, j} b_{i} b_{j} e^{-i \bar{Q}\left(\overleftarrow{R}_{i}-\bar{R}_{j}\right)}$

- using

