

The ancient steel sword and armour technology revealed through advanced neutron imaging techniques

Francesco Grazzi

Consiglio Nazionale delle Ricerche Istituto Sistemi Complessi

Research group

Francesco Grazzi¹, Anna Fedrigo^{1,2}, Filomena Salvemini³, Nikolay Kardjilov⁴, Eberhard Lehmann⁵, Steven Peetermans⁵, Burkhard Schillinger⁶, Takenao Shinohara⁷, Yoshiaki Kiyanagi⁸, Anton Tremsin⁹, Francesco Civita¹⁰, David Edge¹¹, Alan Williams¹¹

1 Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, Italy

2 Niels Bohr Institute, Kopenhagen University, Denmark, and European Spallation Source ESS AB, Sweden

3 Australian Nuclear Science and Technology Organization, Bragg Institute, Australia

4 Helmholtz Zentrum Berlin, BER-II, Germany

5 Paul Scherrer Institute, SINQ Neutron Source, Switzerland

6 Technische Universitaet Munchen, FRM-II, Germany

7 J-PARC Neutron Source, Japan

8 Nagoya University, Graduate School of Engineering

9 University of California at Berkeley, Space Sciences Laboratory, USA

10 Museo Stibbert, Italy

11 The Wallace Collection, UK

Outline

- Historical swords and their properties
- Metallurgy of steel
- What neutron imaging can do
- Samples and results
- A unique feature
- Conclusions

Historical armours and their properties

- purposedly created as protection mainly for sensitive parts: head and chest
- able to stop or slow down hits
- should protect against slashing, piercing and crushing
- Could be as hard as possible and/or able to change shape to absorb blows
- Made of natural hard materials or of steel and iron when enough metal became available

Characteristics:

- portable
- absorbing or deviating hits
- resilient body

Historical swords and their properties

- first tool purposedly created as weapon
- made by a handle and a long cutting body (one or two edges) and a sharp tip
- used for slashing and piercing
- used with one or two hands

Characteristics:

- hard edge and tip
- resilient body

Metallurgy of steel Quasi-equilibrium phase diagram of carbon steel

Austenite: the soft structure of steel at high temperature

Ferrite: the soft and resilient (almost) pure iron phase

Cementite: the hard and brittle carbon containing phase at low temperature

Pearlite: hard and not too much brittle mixture of ferrite and cementite

Metallurgy of steel Metastable steel phase: martensite

Continuous cooling transformation

Fast cooling turns austenite into martensite (and ferrite)

Martensite: extremely hard and brittle metastable phase

Metallurgy of steel

Steel smelting

- Two possible processes (related to the available technology)
- 1) Bloomery iron (possibly steel)
- low temperature furnace (small size)
- low carbon enrichment
- solid state (metal and slag sponge)
- cheap method
- 2) Crucible steel
- high temperature furnace (large size)
- high carbon enrichment
- liquid state (slag removal)
- long and expensive process

Slag inclusions are responsible for the brittleness of the material

Metallurgy of steel

Brittleness reduction:

Slag inclusion removal through mechanical action as lamination or pattern welding

Welding of brittle high carbon edges with resilient low carbon body

Tempering steel after martensitic transition

Neutron Imaging: principles

Complementary x-ray / neutron imaging results

X-Ray

Neutron

Neutrons are optimal for: -light elements, -metals

F. Graz≵i⊧	oup → Poriod	1	2	3	4 -	The a	ncie	nt ste	eel ^ª sv	word	and	armo	our te	echno	ology	reve	aled	thro	ugh He	neutron imaging
	-	0.02										-					1 78 1		0.02	
	2	Li 0.06	Bē 0.22											B 0.28	C 0.27	N 0.11	0 0.16	F 0.14	Ne 0.17	Atomic
	3	Na 0.13	Mg 0.24											AI 0.38	Si 0.33	P 0.25	S 0.30	CI 0.23	Ar 0.20	Absorption cross
	4	K 0.14	Ca 0.26	Sc 0.48	Ti 0.73	V 1.04	Cr 1.29	Mn 1.32	Fe 1.57	Co 1.78	Ni 1.96	Cu 1.97	Zn 1.64	Ga 1.42	Ge 1.33	As 1.50	Se 1.23	Br 0.90	Kr 0.73	sections
	5	Rb 0.47	Ŝr 0.86	Y 1.61	Zr 2.47	Nb 3.43	Mo 4.29	Tc 5.06	Ru 5.71	Rh 6.08	Pd 6.13	Åg 5.67	Čd 4.84	in 4.31	Sn 3.98	Šb 4.28	Te 4.06	i 3.45	Xe 2.53	
	6	Cs 1.47	Ba 2.73		Hf 19.70	Ta 25.47	W 30.49	Re :34.47	Os 37.92	lr 39.01	Pt 38.61	Au 35.94	Hg 25.88	TI 23.23	Pb 22.81	Bi 20.28	Po 20.22	At	Rn 9.77	X Ray
	7	Fr	Ra 11.80		Rf	Db -	Sg	Bh -	Hs	Mt -	Ds	Rg -	Uub -	Uut -	Uuq ·	Uup	Uuh -	Uus	Uuo	
		a sublic								1				1.		SID	100		R	
		Li	anthan	ides	La 5.04	Ce 5.79	Pr 6.23	Nd 6.46	Pm 7.33	Sm 7.68	Eu 5.66	Gd 8.69	Tb 9.46	Dy 10.17	Ho 10.17	Er 11.70	Tm 12.49	Yb 9.32	Lu 14.07	
			Actin	Ides	Ac 24.47	Th 28.95	Pa 39.65	U -49.08	Np	Pu	Am	Cm -	Bk	Cf -	Es	Fm -	Md -	No	Lr ·	TTANA AS
Gr L F	reup → Period	1	2	3	4	5	6	/ 7 \	8	9	.0	11	12	13	14	15	16	17	18	
Q.m.s		H 3.44	ID.																He 0.02	31775
	2	Li 3.30	Be 0.79											B 101.6	C 0.56	N 0.43	O 0.17	F 0.20	Ne 0.10	
	3	Na 0.09	Mg 0.15											AI 0.1	Si 0.11	P 0.12	-S 0.06	CI 1.33	Аг 0.03	
	4	K 0.06	Ca 0.08	Sc 2.00	Ti 0.60	V 0.72	Cr 0.54	Min 1.21	Fe 1.19	Co 3.92	Ni 2.05	Cu 1.07	Zn 0.35	Ga 0.49	Ge 0.47	As: 0.67	Se 0.73	Br 0.24	Кг 0.61	
	5	Rb 0.08	Sr 0.14	Y 0.27	Zr 0.29	Nb 0.40	Mo 0.52	Tc 1.76	Ru 0.58	Rh 10.88	Pd 0.78	Ag 4.04	Cd 115.1	In 7.58	Sn 0.21	Sb 0.30	Te 0.25	1	Xe 0.43	
	6	Cs	Ba 0.07		Hf 4 99	Ta 1.49	W	Re 6.85	Os	lr 30.46	Pt	Au 6.23	Hg 16.21	TI 0.47	Pb 0.38	Bi 0.27	Po	At	Rn	Neutron
	,	Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup	Uuh	Uus	Uuo	
		-	0.34		·	-	-	L -	-	-	-	·	-	<u> </u>		-	Ŀ	•	ŀ	
		~			La	Ce	Pr	N-d	Pm_	Sm	Eu	Gd	Ть	Dv.	Ho	Er	Tm-	Yb	Lu	The second second
		L	an than	ndes	0.52	0.14	0.41	1.87	5.72	171.47	94.58	1479.0	0.93	32.42	2.25	5.48	3.53	1.40	2.7.5	
			Actin	ni des	Ac	Th 0.59	Pa 8.46	U 0.82	Np 9.80	Pu 50.20	Am 2.86	Ċm	Bk -	Cf -	Es	Fm	Md	No	Lr	

Instrumental set-up

Energy selective neutron imaging (Bragg Edge transmission analysis)

Courtesy of Nikolay Kardjilov - Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Energy selective neutron imaging (Bragg Edge transmission analysis)

Courtesy of Nikolay Kardjilov - Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

What neutron imaging can do

Morphological reconstruction of the inner structure and the components distribution *How?*

White beam:

Different scattering and attenuation coefficient between metal and slags (inclusions and welding lines)

Different scattering power between martensite (fine grained) and the rest of steel (quench hardened areas)

Energy selective:

Different attenuation coefficient between high and low carbon steel (different metal composition)

Armour pieces and swords examples

Japanese Helmets

Chronology

Ancient Period (jodai; VIII secolo-1532)

Middle Ages (chūko; 1532-1614)

Modern Era (kindai; 1614-1868)

Typologies

Horagai Bachi helmet

The helmet was supposed to be made of a single folded sheet of iron

Suji-Bachi helmet

The helmet has a complex lamellar structure with no visible external riveting: how was it assembled?

European 17th Century swords

Toledo swords were <u>overprized</u> on any other (factor up to 3!)

Made in Solingen (Germany)

HE-4		HE-4
Made in	Toledo (Spain)	
HE-5		HE-5

Selection of two groups: Spanish swords, German swords

Identification of the qualitative factors responsible for this evaluation

European 17th Century swords: HE5 – Toledo

phase differentiation: differently distributed steel

Danish 9th-11th Century Viking swords

Inclusions and corrosion products are mapped Pattern welding structure mapped

Structure of pattern welded Viking swords

Making a kris

The Indian Wootz steel

Hard and resilient homogeneous steel: no need of quenching, reshaping or polishing never affects mechanical properties.

The samples for neutron investigation

#4 18th Century blades exhibiting surface wootz like pattern

Sword 8: Energy-selective neutron tomography

Japanese sword: structure and making

