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• Plot twist: the size of the x-ray bubbles are reduced by a factor ~1.5 
 

• Please notice the size of the Fe bubble for neutrons, it will come handy later 
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• Cassette-protective layer: Protection 
against scratches and light 
 
 

• Emulsion-gelatine of silver halide crystal 
(AgBr, AgCl, AgI…): When hit by x-ray, it 
becomes more sensitive to reduction and 
leaves a silver trace when developed, 
forming the image 
 
 

• Adhesive: Keeps the emulsion tight and 
flat against the base 
 
 

• Base: Structural support 
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• High resolution (<10 um) and big FoV (easily ~ 500 cm2) 
 

• Analog method, must be digitalized for computed 
processing with loss of resolution 
 

• “one shot only”, if overexposed one has to repeat the 
experiment 
 

• Almost no time resolution 
 

• Very time consuming and “messy” procedure to see the 
image 
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That’s not the end of the story (of course) 
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30 keV electrons in 10 um Gadox 
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Resolution: ~50um 
Almost all the electrons produce light 
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Almost all the electron escape 
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30 keV electrons in 10 um Gadox 
Range: ~4um 
Resolution: ~10 um 
Almost all the electrons produce light 

130 keV electrons in 50 um Gadox 
Range: ~40 um 
Resolution: ~50um 
Almost all the electrons produce light 
 

130 keV electrons in 10 um Gadox 
Range: ~40 um 
Resolution: ~10um 
Almost all the electron escape 

 Similar effect (path-wise) happens with heavy charged 
particles. 
 In ZnS:  range of the alpha particle from 6Li: ~20um 
 range of triton from 6Li: ~100um 
 
 



• Now we have a charged particle, but how does the light emission work? 

Pigment: fluorescence mechanism 
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Gd2O2S:Tb 



ZnS:Ag or ZnS:Cu 

Gd2O2S:Tb 

Slide from B. Walfort, WCNR-10, 
Grindelwald (CH) (2014) 

Spectral matching 



ZnS:Ag or ZnS:Cu 

Gd2O2S:Tb 
Photosensitivity of CCD 

Slide from B. Walfort, WCNR-10, 
Grindelwald (CH) (2014) 

How many photons are produced? 
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Cameras have the duty to convert photons into a charge signal that is presented as 
a digital image 
• They sit in a light tight box 
• Attached to an objective 
• Movable for focusing 
• Outside of the direct beam (mirror) 
• Shielded from scattered neutrons 
• Nowadays, choice between 1 MP, 4 MP up 

to 16 MP 
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• Common materials used for neutron detection 
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  CCD 
• Charge Coupled Device 
• Most commonly used 
• More expensive than sCMOS 
• Can be cooled more than sCMOS 
• Has lower noise levels 
• Has an exposure time-dependent DC 
• Can be exposed for longer time 

(typically higher full well capacity) 
• Long readout time 
• More pixel area is photosensitive 

(better low light performances) 
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  sCMOS 
• (scientific) Complementary Metal 

Oxide Semiconductor 
• More and more widespread 
• Cheaper than CCD 
• Cooled to a lower temperature 
• Higher noise level 
• DC is constant 
• Limited exposure time 
• Fast readout (up to >100 full frames 

per second) 
• Lower low light performances 
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• The challenge of detecting a neutron 
• Common materials used for neutron detection 
• Standard detectors for neutron imaging 
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• Borrowed from x-ray 
• Pixelated light detector covered with scintillator (Gd2O2S) 
• Medium frame rate ~fps 
• Large area 
• Fixed pixel size ~150 um 
• Fixed scintillator thickness 
• Relatively thin and lightweight (3-4 cm, few kg) 
• In the direct beam 
• Dead pixels issue 
• Still not very commonly used 
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• In many experiments it is advantageous to know or select a specific neutron 
wavelength 
 

ToF detectors: very brief introduction 
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• So if we know when the neutron was generated and when it arrived at the detector, 
and how long was its flight path, we have a direct measure of the wavelength 
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• In many experiments it is advantageous to know or select a specific neutron 
wavelength 

• We have the following equations: 
 
 
 
 

• So if we know when the neutron was generated and when it arrived at the detector, 
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• In many experiments it is advantageous to know or select a specific neutron 
wavelength 

• We have the following equations: 
 
 
 
 

• So if we know when the neutron was generated and when it arrived at the detector, 
and how long was its flight path, we have a direct measure of the wavelength 
 

• We need a pulsed source and a (pixelated) detector with precise timing capabilities! 
 
 
 

Other useful equations: 
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• 10B-loaded glass Micro Channel Plate (MCP) 
• Reaction particles create e- 
• e- are accelerated and multiplicated by HV in 

vacuum 
• TimePix chip readout 
• 55um pixel size (fixed) 
• 256 x 256 pixels chip, stacked in a 2 x 2 matrix 
• Seams between chips 
• 28 x 28 cm2 
• Single particle counting and arrival time mode 
• Able to calculate centroiding 
• ns timing capabilities 
• Limit on the total flux (107n/s/cm2)  
• Readout gaps for buffer reading (older 

versions) 
• Noiseless (except Poisson’s) 
• BONUS! Resonance imaging 
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• The challenge of detecting a neutron 
• Common materials used for neutron detection 
• Standard detectors for neutron imaging 
− Analog methods 
− Digital methods 
− Scintillator + camera (the workhorse) 
− CCD vs. sCMOS 

− Flat panel detectors 
• Advanced detectors: ToF 
• Fast neutron detection for neutron imaging 

Fast neutron imaging 
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• Fast neutrons are highly penetrating 
• That is true also for the detector 

itself! 
• Still need to convert neutrons to 

charged particle 
• Recoil proton in a H2 rich matrix 

(plastic) 
• Very low interaction probability  

long counting time 
• Normal scintillator + camera / timepix 

detector 
• Isotopic sensitivity with good ToF 

resolution by using resonance analysis 
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Wir schaffen Wissen – heute für morgen 

Thank you for your 
attention! 
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