Detectors for neutron imaging
• The challenge of detecting a neutron
• Common materials used for neutron detection
• Standard detectors for neutron imaging
 – Analog methods
 – Digital methods
 – Scintillator + camera (the workhorse)
 – CCD vs. sCMOS
 – Flat panel detectors
• Advanced detectors: ToF
• Fast neutron detection for neutron imaging
The challenge of detecting a neutron

- Common materials used for neutron detection
- Standard detectors for neutron imaging
 - Analog methods
 - Digital methods
 - Scintillator + camera (the workhorse)
 - CCD vs. sCMOS
 - Flat panel detectors
- Advanced detectors: ToF
- Fast neutron detection for neutron imaging
The challenge of detecting a neutron

- You might be familiar with this picture:
The challenge of detecting a neutron

- You might be familiar with this picture:

![Diagram showing x-ray and neutron cross sections with elements H, D, C, O, Al, Si, Fe]

- Plot twist: the size of the x-ray bubbles are reduced by a factor ~ 1.5
The challenge of detecting a neutron

- You might be familiar with this picture:

- Plot twist: the size of the x-ray bubbles are reduced by a factor ~ 1.5

- Please notice the size of the Fe bubble for neutrons, it will come handy later
Common materials for neutron detection

- The challenge of detecting a neutron
- **Common materials used for neutron detection**
- Standard detectors for neutron imaging
 - Analog methods
 - Digital methods
 - Scintillator + camera (the workhorse)
 - CCD vs. sCMOS
 - Flat panel detectors
- Advanced detectors: ToF
- Fast neutron detection for neutron imaging
Neutron conversion to light

\[n + ^6\text{Li} \rightarrow ^3\text{H} (2.73 \text{ MeV}) + \alpha (2.05 \text{ MeV}) \]

\[n + ^{157}\text{Gd} \rightarrow 259 \text{ kb} + e^- (29-130 \text{ keV}) \]

\[n + ^{10}\text{B} \rightarrow 3840 \text{ b} + ^7\text{Li} (94\%: 840 \text{ keV}) \quad (6\%: 1.02 \text{ keV}) + \alpha (94\%: 1.47 \text{ MeV}) \quad (6\%: 1.78 \text{ MeV}) \]
Neutron conversion to light

\[n + ^6\text{Li} \rightarrow ^3\text{H} (2.73 \text{ MeV}) + ^\alpha (2.05 \text{ MeV}) \]

\[n + ^{157}\text{Gd} \rightarrow ^{157}\text{Gd} + e^- (29-130 \text{ keV}) \]

\[n + ^{10}\text{B} \rightarrow ^7\text{Li} (94\%: 840 \text{ keV}) (6\%: 1.02 \text{ keV}) + ^\alpha (94\%: 1.47 \text{ MeV}) (6\%: 1.78 \text{ MeV}) \]
Analog methods

- The challenge of detecting a neutron
- Common materials used for neutron detection
- Standard detectors for neutron imaging
 - Analog methods
 - Digital methods
 - Scintillator + camera (the workhorse)
 - CCD vs. sCMOS
 - Flat panel detectors
- Advanced detectors: ToF
- Fast neutron detection for neutron imaging
X-ray film

- Cassette-protective layer: Protection against scratches and light
- Emulsion-gelatine of silver halide crystal (AgBr, AgCl, AgI...): When hit by x-ray, it becomes more sensitive to reduction and leaves a silver trace when developed, forming the image
- Adhesive: Keeps the emulsion tight and flat against the base
- Base: Structural support
- `X-ray film + converter plate`

- Cassette-protective layer: Protection against scratches and light

- Converter plate (Gd): Absorbs neutrons and produces e-

- Emulsion-gelatine of silver halide crystal (AgBr, AgCl, AgI...): When hit by e-, it becomes more sensitive to reduction and leaves a silver trace when developed, forming the image

- Adhesive: Keeps the emulsion tight and flat against the base

- Base: Structural support
X-ray film + converter plate

- **Cassette-protective layer:** Protection against scratches and light
- **Converter plate (Gd):** Absorbs neutrons and produces e-
- **Emulsion-gelatine of silver halide crystal (AgBr, AgCl, AgI…):** When hit by e-, it becomes more sensitive to reduction and leaves a silver trace when developed forming the image
- **Adhesive:** Keeps the emulsion tight and flat against the base
- **Base:** Structural support

- High resolution (<10 μm) and big FoV (easily ~ 500 cm²)
- Analog method, must be digitalized for computed processing with loss of resolution
- “one shot only”, if overexposed one has to repeat the experiment
- Almost no time resolution
- Very time consuming and “messy” procedure to see the image
Digital methods

• The challenge of detecting a neutron
• Common materials used for neutron detection
• Standard detectors for neutron imaging
 – Analog methods
 – Digital methods
 – Scintillator + camera (the workhorse)
 – CCD vs. sCMOS
 – Flat panel detectors
• Advanced detectors: ToF
• Fast neutron detection for neutron imaging
The scintillator
The scintillator

- A scintillator takes an ionizing radiation and produces the light along the path the radiation takes
The scintillator

- A scintillator takes an ionizing radiation and produces the light along the path the radiation takes
- Made up of 4 parts:
The scintillator

• A scintillator takes an ionizing radiation and produces the light along the path the radiation takes
• Made up of 4 parts:
 1. The substrate: physically supports the scintillator, blocks unwanted light. Should be made of a neutron transparent material (Al or Si)
The scintillator

- A scintillator takes an ionizing radiation and produces the light along the path the radiation takes
- Made up of 4 parts:
 1. The substrate: physically supports the scintillator, blocks unwanted light. Should be made of a neutron transparent material (Al or Si)
 2. The absorber: converts neutrons to ionizing particles that can be detected
• A scintillator takes an ionizing radiation and produces the light along the path the radiation takes
• Made up of 4 parts:
 1. The substrate: physically supports the scintillator, blocks unwanted light. Should be made of a neutron transparent material (Al or Si)
 2. The absorber: converts neutrons to ionizing particles that can be detected
 3. The fluorescent crystal: upon excitation from ionizing radiation produces light

![Diagram of scintillator](image-url)
The scintillator

- A scintillator takes an ionizing radiation and produces the light along the path the radiation takes
- Made up of 4 parts:
 1. The substrate: physically supports the scintillator, blocks unwanted light. Should be made of a neutron transparent material (Al or Si)
 2. The absorber: converts neutrons to ionizing particles that can be detected
 3. The fluorescent crystal: upon excitation from ionizing radiation produces light
 4. A binder: binds everything together and makes the scintillator easy to handle. It should be optically transparent and contain little hydrogen
The scintillator

- A scintillator takes an ionizing radiation and produces the light along the path the radiation takes
- Made up of 4 parts:
 1. The substrate: physically supports the scintillator, blocks unwanted light. Should be made of a neutron transparent material (Al or Si)
 2. The absorber: converts neutrons to ionizing particles that can be detected
 3. The fluorescent crystal: upon excitation from ionizing radiation produces light
 4. A binder: binds everything together and makes the scintillator easy to handle. It should be optically transparent and contain little hydrogen
How do you choose which absorber?
How do you choose which absorber?

- ^6Li, 940 b, ^3H (2.73 MeV)
- ^7Li (94%: 840 keV) (6%: 1.02 keV)
- ^1H (2.05 MeV)
- ^7Li (94%: 840 keV) (6%: 1.02 keV)
- ^6Li, 259 kb, $^\text{e}^-$ (29-130 keV)
- ^7Li (94%: 840 keV) (6%: 1.02 keV)
- ^{157}Gd, 3840 b, $^\alpha$ (2.05 MeV)
- ^{157}Gd, 440 kb, $^\alpha$ (2.05 MeV)
- ^{10}B, 940 b, $^\alpha$ (2.05 MeV)
How do you choose which absorber?

- ^6Li: ^3H (2.73 MeV)
- ^6Li: α (2.05 MeV)
- ^7Li: (94%: 840 keV) (6%: 1.02 keV)
- ^7Li: α (94%: 1.47 MeV) (6%: 1.78 MeV)
- ^{157}Gd: e^- (29-130 keV)
- ^{157}Gd: β^- (259 kb)
- ^{10}B: α (94%: 1.47 MeV) (6%: 1.78 MeV)
How do you choose which absorber?

Absorption at 1.8 Å

Absorption at 3 Å

[Graphs showing absorption vs. thickness for different materials]
The absorber

How do you choose the thickness?

Rule-of-thumb: thickness = spatial resolution (valid because these scintillators are powder)
The absorber

How do you choose the thickness?

Rule-of-thumb: thickness = spatial resolution (valid because these scintillators are powder)

50um-LiF+ZnS → 20um-Gadox → 10um-Gadox

1mm
How do you choose the thickness?

Rule-of-thumb: thickness = spatial resolution (valid because these scintillators are powder)

50um-LiF+ZnS 20um-Gadox 10um-Gadox

That’s not the end of the story (of course)
The absorber

- ^6Li:
 - $n + ^6\text{Li} \rightarrow \alpha + ^3\text{H}$ (940 b, 3H (2.73 MeV), α (2.05 MeV))

- ^{157}Gd:
 - $n + ^{157}\text{Gd} \rightarrow \alpha + ^{157}\text{Gd}$ (259 kb, e⁻ (29-130 keV))

- ^{10}B:
 - $n + ^{10}\text{B} \rightarrow 7\text{Li}$ (3840 b, 7Li (94%: 840 keV), 6%: 1.02 keV)
The absorber

- ^6Li to $^3\text{H} (2.73 \text{ MeV})$ and $^6\text{He} (2.05 \text{ MeV})$
- ^1H to $^7\text{Li} (94\%: 840 \text{ keV}, 6\%: 1.02 \text{ keV})$ and $^7\text{Li} (94\%: 1.47 \text{ MeV}, 6\%: 1.78 \text{ MeV})$
- ^1H to $^4\text{He} (29-130 \text{ keV})$ and ^1H to $^7\text{Li} (94\%: 840 \text{ keV}, 6\%: 1.02 \text{ keV})$
- ^1H to $^7\text{Li} (94\%: 1.47 \text{ MeV}, 6\%: 1.78 \text{ MeV})$
- ^6Li to $^3\text{He} (2.05 \text{ MeV})$
- ^1H to $^7\text{Li} (94\%: 840 \text{ keV}, 6\%: 1.02 \text{ keV})$
- ^1H to $^7\text{Li} (94\%: 1.47 \text{ MeV}, 6\%: 1.78 \text{ MeV})$
The absorber

- 6Li
 - 3H (2.73 MeV)
 - α (2.05 MeV)
 - 7Li (94%: 840 keV)
 - α (94%: 1.47 MeV)

- 157Gd
 - α (29-130 keV)
 - 7Li (94%: 840 keV)
 - α (94%: 1.47 MeV)

- 10B
 - 7Li (94%: 840 keV)
 - α (94%: 1.47 MeV)

The range of these particles is different!
Path of charged particles in scintillators

30 keV electrons in 10 um Gadox
Range: ~4um
Resolution: ~10 um
Almost all the electrons produce light

130 keV electrons in 50 um Gadox
Range: ~40 um
Resolution: ~50um
Almost all the electrons produce light

130 keV electrons in 10 um Gadox
Range: ~40 um
Resolution: ~10um
Almost all the electron escape
Path of charged particles in scintillators

- 30 keV electrons in 10 um Gadox
 - Range: ~4 um
 - Resolution: ~10 um
 - Almost all electrons produce light

- 130 keV electrons in 50 um Gadox
 - Range: ~40 um
 - Resolution: ~10 um
 - Almost all electrons produce light

- 130 keV electrons in 10 um Gadox
 - Range: ~40 um
 - Resolution: ~10 um
 - Almost all electrons escape

Similar effect (path-wise) happens with heavy charged particles.

- In ZnS:
 - Range of the alpha particle from 6Li: ~20 um
 - Range of triton from 6Li: ~100 um
• Now we have a charged particle, but how does the light emission work?

1) Excitation creating a hole in the valence band and an excited electron in the conduction band
2) Relaxation of the excited electron to the ground level of the conduction band
3) Relaxation of the created hole to the top of the valence band
4) Fluorescence emission via an «impurity ion»
5) Non emissive recombination of the electron and hole
6) Like 5) but via an impurity (defect center or impurity ion)
How many photons are produced?

Light yield:

\[Y_{ph} = \frac{10^6 S Q}{\beta E_g} \text{ photons/MeV} \]

- \(Y_{ph} \) = number of photons emitted by the scintillator per unit of energy absorbed
- \(\beta \) = constant that appears approximately 2.5
- \(E_g \) = band gap energy
- \(S \) = transfer efficiency
- \(Q \) = quantum efficiency

For the ideal situation \(S \) and \(Q \) are 100%

Red solid line represents the maximum light yield.
Spectral matching

ZnS:Ag or ZnS:Cu

Gd$_2$O$_2$S:Tb

Slide from B. Walfort, WCNR-10, Grindelwald (CH) (2014)
How many photons are produced?

ZnS:Ag or ZnS:Cu

Gd$_2$O$_2$S:Tb

Photosensitivity of CCD

Slide from B. Walfort, WCNR-10, Grindelwald (CH) (2014)
• The challenge of detecting a neutron
• Common materials used for neutron detection
• Standard detectors for neutron imaging
 – Analog methods
 – Digital methods
 – Scintillator + camera (the workhorse)
 – CCD vs. sCMOS
 – Flat panel detectors
• Advanced detectors: ToF
• Fast neutron detection for neutron imaging
Cameras have the duty to convert photons into a charge signal that is presented as a digital image.
Cameras have the duty to convert photons into a charge signal that is presented as a digital image
• They sit in a light tight box
Cameras have the duty to convert photons into a charge signal that is presented as a digital image.

- They sit in a light tight box
- Attached to an objective
Cameras have the duty to convert photons into a charge signal that is presented as a digital image
• They sit in a light tight box
• Attached to an objective
• Movable for focusing
Cameras have the duty to convert photons into a charge signal that is presented as a digital image

- They sit in a light tight box
- Attached to an objective
- Movable for focusing
- Outside of the direct beam (mirror)
Cameras have the duty to convert photons into a charge signal that is presented as a digital image

- They sit in a light tight box
- Attached to an objective
- Movable for focusing
- Outside of the direct beam (mirror)
- Shielded from scattered neutrons
Cameras have the duty to convert photons into a charge signal that is presented as a digital image

- They sit in a light tight box
- Attached to an objective
- Movable for focusing
- Outside of the direct beam (mirror)
- Shielded from scattered neutrons
- Nowadays, choice between 1 MP, 4 MP up to 16 MP
Cameras have the duty to convert photons into a charge signal that is presented as a digital image
- They sit in a light tight box
- Attached to an objective
- Movable for focusing
- Outside of the direct beam (mirror)
- Shielded from scattered neutrons
- Nowadays, choice between 1 MP, 4 MP up to 16 MP
- Pixel size down to ~6 um
Cameras have the duty to convert photons into a charge signal that is presented as a digital image

- They sit in a light tight box
- Attached to an objective
- Movable for focusing
- Outside of the direct beam (mirror)
- Shielded from scattered neutrons
- Nowadays, choice between 1 MP, 4 MP up to 16 MP
- Pixel size down to ~6 um
- Two main technologies: CCD and sCMOS
• The challenge of detecting a neutron
• Common materials used for neutron detection
• Standard detectors for neutron imaging
 – Analog methods
 – Digital methods
 – Scintillator + camera (the workhorse)
 – CCD vs. sCMOS
 – Flat panel detectors
• Advanced detectors: ToF
• Fast neutron detection for neutron imaging
CCDs vs sCMOS

CCDs:
- Charge Coupled Device
- Most commonly used
- More expensive than sCMOS
- Can be cooled more than sCMOS
- Has lower noise levels
- Has an exposure time-dependent DC
- Can be exposed for longer time (typically higher full well capacity)
- Long readout time
- More pixel area is photosensitive (better low light performances)

sCMOS:
- (scientific) Complementary Metal Oxide Semiconductor
- More and more widespread
- Cheaper than CCD
- Cooled to a lower temperature
- Higher noise level
- DC is constant
- Limited exposure time
- Fast readout (up to >100 full frames per second)
- Lower low light performances
CCDs vs sCMOS

CCD
• Charge Coupled Device

sCMOS
• (scientific) Complementary Metal Oxide Semiconductor
CCDs vs sCMOS

CCD
- Charge Coupled Device
- Most commonly used

sCMOS
- (scientific) Complementary Metal Oxide Semiconductor
- More and more widespread
CCDs vs sCMOS

<table>
<thead>
<tr>
<th>CCD</th>
<th>sCMOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Charge Coupled Device</td>
<td>• (scientific) Complementary Metal Oxide Semiconductor</td>
</tr>
<tr>
<td>• Most commonly used</td>
<td>• More and more widespread</td>
</tr>
<tr>
<td>• More expensive than sCMOS</td>
<td>• Cheaper than CCD</td>
</tr>
<tr>
<td>CCD</td>
<td>sCMOS</td>
</tr>
<tr>
<td>----------------------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>• Charge Coupled Device</td>
<td>• (scientific) Complementary Metal</td>
</tr>
<tr>
<td>• Most commonly used</td>
<td>Oxide Semiconductor</td>
</tr>
<tr>
<td>• More expensive than sCMOS</td>
<td>• More and more widespread</td>
</tr>
<tr>
<td>• Can be cooled more than sCMOS</td>
<td>• Cheaper than CCD</td>
</tr>
<tr>
<td></td>
<td>• Cooled to a higher temperature</td>
</tr>
<tr>
<td>CCD</td>
<td>sCMOS</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>Charge Coupled Device</td>
<td>(scientific) Complementary Metal Oxide Semiconductor</td>
</tr>
<tr>
<td>Most commonly used</td>
<td>More and more widespread</td>
</tr>
<tr>
<td>More expensive than sCMOS</td>
<td>Cheaper than CCD</td>
</tr>
<tr>
<td>Can be cooled more than sCMOS</td>
<td>Cooled to a higher temperature</td>
</tr>
<tr>
<td>Has lower noise levels</td>
<td>Higher noise level</td>
</tr>
</tbody>
</table>
CCDs vs sCMOS

<table>
<thead>
<tr>
<th>CCD</th>
<th>sCMOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Charge Coupled Device</td>
<td>• (scientific) Complementary Metal Oxide Semiconductor</td>
</tr>
<tr>
<td>• Most commonly used</td>
<td>• More and more widespread</td>
</tr>
<tr>
<td>• More expensive than sCMOS</td>
<td>• Cheaper than CCD</td>
</tr>
<tr>
<td>• Can be cooled more than sCMOS</td>
<td>• Cooled to a higher temperature</td>
</tr>
<tr>
<td>• Has lower noise levels</td>
<td>• Higher noise level</td>
</tr>
<tr>
<td>• Has an exposure time-dependent DC</td>
<td>• DC is constant</td>
</tr>
</tbody>
</table>
CCDs vs sCMOS

CCD
- Charge Coupled Device
- Most commonly used
- More expensive than sCMOS
- Can be cooled more than sCMOS
- Has lower noise levels
- Has an exposure time-dependent DC
- Can be exposed for longer time (typically higher full well capacity)

sCMOS
- (scientific) Complementary Metal Oxide Semiconductor
- More and more widespread
- Cheaper than CCD
- Cooled to a higher temperature
- Higher noise level
- DC is constant
- Limited exposure time
CCDs vs sCMOS

<table>
<thead>
<tr>
<th>CCD</th>
<th>sCMOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charge Coupled Device</td>
<td>(scientific) Complementary Metal Oxide Semiconductor</td>
</tr>
<tr>
<td>Most commonly used</td>
<td>More and more widespread</td>
</tr>
<tr>
<td>More expensive than sCMOS</td>
<td>Cheaper than CCD</td>
</tr>
<tr>
<td>Can be cooled more than sCMOS</td>
<td>Cooled to a higher temperature</td>
</tr>
<tr>
<td>Has lower noise levels</td>
<td>Higher noise level</td>
</tr>
<tr>
<td>Has an exposure time-dependent DC</td>
<td>DC is constant</td>
</tr>
<tr>
<td>Can be exposed for longer time</td>
<td>Limited exposure time</td>
</tr>
<tr>
<td>(typically higher full well capacity)</td>
<td>Fast readout (up to >100 full frames per second)</td>
</tr>
<tr>
<td>Long readout time</td>
<td></td>
</tr>
</tbody>
</table>
CCDs vs sCMOS

CCD
- Charge Coupled Device
- Most commonly used
- More expensive than sCMOS
- Can be cooled more than sCMOS
- Has lower noise levels
- Has an exposure time-dependent DC
- Can be exposed for longer time (typically higher full well capacity)
- Long readout time
- More pixel area is photosensitive (better low light performances)

sCMOS
- (scientific) Complementary Metal Oxide Semiconductor
- More and more widespread
- Cheaper than CCD
- Cooled to a higher temperature
- Higher noise level
- DC is constant
- Limited exposure time
- Fast readout (up to >100 full frames per second)
- Lower low light performances
Flat panel detectors

- The challenge of detecting a neutron
- Common materials used for neutron detection
- Standard detectors for neutron imaging
 - Analog methods
 - Digital methods
 - Scintillator + camera (the workhorse)
 - CCD vs. sCMOS
 - Flat panel detectors
- Advanced detectors: ToF
- Fast neutron detection for neutron imaging
• Borrowed from x-ray
Flat panel detectors

- Borrowed from x-ray
- Pixelated light detector covered with scintillator (Gd$_2$O$_2$S)
Flat panel detectors

- Borrowed from x-ray
- Pixelated light detector covered with scintillator (Gd$_2$O$_2$S)
- Medium frame rate \simfps
Flat panel detectors

- Borrowed from x-ray
- Pixelated light detector covered with scintillator (Gd$_2$O$_2$S)
- Medium frame rate ~fps
- Large area
Flat panel detectors

- Borrowed from x-ray
- Pixelated light detector covered with scintillator (Gd$_2$O$_2$S)
- Medium frame rate ~fps
- Large area
- Fixed pixel size ~150 um
Flat panel detectors

- Borrowed from x-ray
- Pixelated light detector covered with scintillator (Gd₂O₂S)
- Medium frame rate ~fps
- Large area
- Fixed pixel size ~150 um
- Fixed scintillator thickness
Flat panel detectors

- Borrowed from x-ray
- Pixelated light detector covered with scintillator (Gd$_2$O$_2$S)
- Medium frame rate ~fps
- Large area
- Fixed pixel size ~150 um
- Fixed scintillator thickness
- Relatively thin and lightweight (3-4 cm, few kg)
Flat panel detectors

• Borrowed from x-ray
• Pixelated light detector covered with scintillator (Gd₂O₂S)
• Medium frame rate ~fps
• Large area
• Fixed pixel size ~150 um
• Fixed scintillator thickness
• Relatively thin and lightweight (3-4 cm, few kg)
• In the direct beam
Flat panel detectors

- Borrowed from x-ray
- Pixelated light detector covered with scintillator (Gd$_2$O$_2$S)
- Medium frame rate ~fps
- Large area
- Fixed pixel size ~150 um
- Fixed scintillator thickness
- Relatively thin and lightweight (3-4 cm, few kg)
- In the direct beam
- Dead pixels issue
Flat panel detectors

- Borrowed from x-ray
- Pixelated light detector covered with scintillator (Gd$_2$O$_2$S)
- Medium frame rate ~fps
- Large area
- Fixed pixel size ~150 um
- Fixed scintillator thickness
- Relatively thin and lightweight (3-4 cm, few kg)
- In the direct beam
- Dead pixels issue
- Still not very commonly used
• The challenge of detecting a neutron
• Common materials used for neutron detection
• Standard detectors for neutron imaging
 – Analog methods
 – Digital methods
 – Scintillator + camera (the workhorse)
 – CCD vs. sCMOS
 – Flat panel detectors
• Advanced detectors: ToF
• Fast neutron detection for neutron imaging
• In many experiments it is advantageous to know or select a specific neutron wavelength
• In many experiments it is advantageous to know or select a specific neutron wavelength
• We have the following equations:
ToF detectors: very brief introduction

- In many experiments it is advantageous to know or select a specific neutron wavelength
- We have the following equations:

\[E = \frac{1}{2} mv^2 \]
• In many experiments it is advantageous to know or select a specific neutron wavelength
• We have the following equations:

\[E = \frac{1}{2}mv^2 \]
\[mv = \frac{h}{\lambda} \]
ToF detectors: very brief introduction

- In many experiments it is advantageous to know or select a specific neutron wavelength
- We have the following equations:

\[E = \frac{1}{2}mv^2 \quad mv = \frac{h}{\lambda} \quad v = \frac{L}{ToF} \]
In many experiments it is advantageous to know or select a specific neutron wavelength.

We have the following equations:

\[E = \frac{1}{2}mv^2 \]
\[mv = \frac{h}{\lambda} \]
\[v = \frac{L}{ToF} \]

\[ToF = \frac{mL\lambda}{h} \] or
In many experiments it is advantageous to know or select a specific neutron wavelength.

We have the following equations:

\[E = \frac{1}{2} mv^2 \]
\[mv = \frac{h}{\lambda} \]
\[v = \frac{L}{ToF} \]

\[ToF = \frac{mL\lambda}{h} \quad \text{or} \quad \lambda = \frac{h \cdot ToF}{mL} \]
• In many experiments it is advantageous to know or select a specific neutron wavelength
• We have the following equations:

\[E = \frac{1}{2}mv^2 \quad mv = \frac{h}{\lambda} \quad v = \frac{L}{ToF} \]

\[ToF = \frac{mL\lambda}{h} \quad \text{or} \quad \lambda = \frac{h \cdot ToF}{mL} \]

• So if we know when the neutron was generated and when it arrived at the detector, and how long was its flight path, we have a direct measure of the wavelength
• In many experiments it is advantageous to know or select a specific neutron wavelength

• We have the following equations:

\[E = \frac{1}{2}mv^2 \quad \Rightarrow \quad mv = \frac{h}{\lambda} \quad \Rightarrow \quad v = \frac{L}{ToF} \]

\[ToF = \frac{mL\lambda}{h} \quad \text{or} \quad \lambda = \frac{h \cdot ToF}{mL} \]

• So if we know when the neutron was generated and when it arrived at the detector, and how long was its flight path, we have a direct measure of the wavelength

• We need a pulsed source and a (pixelated) detector with precise timing capabilities!
In many experiments it is advantageous to know or select a specific neutron wavelength.

We have the following equations:

$$E = \frac{1}{2} mv^2 \quad mv = \frac{h}{\lambda} \quad v = \frac{L}{ToF}$$

So if we know when the neutron was generated and when it arrived at the detector, and how long was its flight path, we have a direct measure of the wavelength.

We need a pulsed source and a (pixelated) detector with precise timing capabilities!

Other useful equations:

$$E\,[meV] = \frac{81.82}{(\lambda[\AA])^2} \quad \lambda[\AA] = \frac{9.045}{\sqrt{E\,[meV]}} \quad v[m/s] = \frac{3956}{\lambda[\AA]} = 437 \cdot \sqrt{E\,[meV]}$$
Example: MCP based detector (Berkeley)
Example: MCP based detector (Berkeley)

- ^{10}B-loaded glass Micro Channel Plate (MCP)
• 10B-loaded glass Micro Channel Plate (MCP)
• Reaction particles create e-
Example: MCP based detector (Berkeley)

- 10B-loaded glass Micro Channel Plate (MCP)
- Reaction particles create e-
- e- are accelerated and multiplicated by HV in vacuum
• 10B-loaded glass Micro Channel Plate (MCP)
• Reaction particles create e-
• e- are accelerated and multiplied by HV in vacuum
• TimePix chip readout
• \(^{10}\)B-loaded glass Micro Channel Plate (MCP)
• Reaction particles create e-
• e- are accelerated and multiplicated by HV in vacuum
• TimePix chip readout
• 55μm pixel size (fixed)
Example: MCP based detector (Berkeley)

- ^{10}B-loaded glass Micro Channel Plate (MCP)
- Reaction particles create e-
- e- are accelerated and multiplied by HV in vacuum
- TimePix chip readout
- 55um pixel size (fixed)
- 256 x 256 pixels chip, stacked in a 2 x 2 matrix
Example: MCP based detector (Berkeley)

- ^{10}B-loaded glass Micro Channel Plate (MCP)
- Reaction particles create e-
- e- are accelerated and multiplicated by HV in vacuum
- TimePix chip readout
- 55um pixel size (fixed)
- 256 x 256 pixels chip, stacked in a 2 x 2 matrix
- Seams between chips
• 10B-loaded glass Micro Channel Plate (MCP)
• Reaction particles create e-
• e- are accelerated and multiplicated by HV in vacuum
• TimePix chip readout
• 55um pixel size (fixed)
• 256 x 256 pixels chip, stacked in a 2 x 2 matrix
• Seams between chips
• 28 x 28 cm²
Example: MCP based detector (Berkeley)

- ^{10}B-loaded glass Micro Channel Plate (MCP)
- Reaction particles create e^-
- e^- are accelerated and multiplicated by HV in vacuum
- TimePix chip readout
- 55um pixel size (fixed)
- 256 x 256 pixels chip, stacked in a 2 x 2 matrix
- Seams between chips
- 28 x 28 cm2
- Single particle counting and arrival time mode
Example: MCP based detector (Berkeley)

- ^{10}B-loaded glass Micro Channel Plate (MCP)
- Reaction particles create e^{-}
- e^{-} are accelerated and multiplied by HV in vacuum
- TimePix chip readout
- 55um pixel size (fixed)
- 256 x 256 pixels chip, stacked in a 2 x 2 matrix
- Seams between chips
- 28 x 28 cm2
- Single particle counting and arrival time mode
- Able to calculate centroiding
Example: MCP based detector (Berkeley)

- 10B-loaded glass Micro Channel Plate (MCP)
- Reaction particles create e^-
- e^- are accelerated and multiplied by HV in vacuum
- TimePix chip readout
- 55um pixel size (fixed)
- 256 x 256 pixels chip, stacked in a 2 x 2 matrix
- Seams between chips
- 28 x 28 cm2
- Single particle counting and arrival time mode
- Able to calculate centroiding
- ns timing capabilities
Example: MCP based detector (Berkeley)

- ^{10}B-loaded glass Micro Channel Plate (MCP)
- Reaction particles create e-
- e- are accelerated and multiplicacted by HV in vacuum
- TimePix chip readout
- 55um pixel size (fixed)
- 256 x 256 pixels chip, stacked in a 2 x 2 matrix
- Seams between chips
- 28 x 28 cm2
- Single particle counting and arrival time mode
- Able to calculate centroiding
- ns timing capabilities
- Limit on the total flux (10^7n/s/cm^2)
Example: MCP based detector (Berkeley)

- 10B-loaded glass Micro Channel Plate (MCP)
- Reaction particles create e-
- e- are accelerated and multiplied by HV in vacuum
- TimePix chip readout
- 55um pixel size (fixed)
- 256 x 256 pixels chip, stacked in a 2 x 2 matrix
- Seams between chips
- 28 x 28 cm2
- Single particle counting and arrival time mode
- Able to calculate centroiding
- ns timing capabilities
- Limit on the total flux (10^7 n/s/cm2)
- Readout gaps for buffer reading (older versions)
• 10B-loaded glass Micro Channel Plate (MCP)
• Reaction particles create e-
• e- are accelerated and multiplicated by HV in vacuum
• TimePix chip readout
• 55um pixel size (fixed)
• 256 x 256 pixels chip, stacked in a 2 x 2 matrix
• Seams between chips
• 28 x 28 cm²
• Single particle counting and arrival time mode
• Able to calculate centroiding
• ns timing capabilities
• Limit on the total flux (10^7 n/s/cm²)
• Readout gaps for buffer reading (older versions)
• Noiseless (except Poisson’s)
• ^{10}B-loaded glass Micro Channel Plate (MCP)
• Reaction particles create e-
• e- are accelerated and multiplied by HV in vacuum
• TimePix chip readout
• 55um pixel size (fixed)
• 256 x 256 pixels chip, stacked in a 2 x 2 matrix
• Seams between chips
• 28 x 28 cm²
• Single particle counting and arrival time mode
• Able to calculate centroiding
• ns timing capabilities
• Limit on the total flux (10^7 n/s/cm²)
• Readout gaps for buffer reading (older versions)
• Noiseless (except Poisson’s)
• BONUS! Resonance imaging
Fast neutron imaging

- The challenge of detecting a neutron
- Common materials used for neutron detection
- Standard detectors for neutron imaging
 - Analog methods
 - Digital methods
 - Scintillator + camera (the workhorse)
 - CCD vs. sCMOS
 - Flat panel detectors
- Advanced detectors: ToF
- Fast neutron detection for neutron imaging
• Fast neutrons are highly penetrating
Fast neutron detection

- Fast neutrons are highly penetrating
- That is true also for the detector itself!
• Fast neutrons are highly penetrating
• That is true also for the detector itself!
• Still need to convert neutrons to charged particle
• Fast neutrons are highly penetrating
• That is true also for the detector itself!
• Still need to convert neutrons to charged particle
• Recoil proton in a H_2 rich matrix (plastic)
Fast neutrons are highly penetrating
• That is true also for the detector itself!
• Still need to convert neutrons to charged particle
• Recoil proton in a H₂ rich matrix (plastic)
• Very low interaction probability → long counting time
• Fast neutrons are highly penetrating
• That is true also for the detector itself!
• Still need to convert neutrons to charged particle
• Recoil proton in a H₂ rich matrix (plastic)
• Very low interaction probability → long counting time
• Normal scintillator + camera / timepix detector
• Fast neutrons are highly penetrating
• That is true also for the detector itself!
• Still need to convert neutrons to charged particle
• Recoil proton in a H₂ rich matrix (plastic)
• Very low interaction probability \rightarrow long counting time
• Normal scintillator + camera / timepix detector
• Isotopic sensitivity with good ToF resolution by using resonance analysis
Wir schaffen Wissen – heute für morgen

Thank you for your attention!