Moving to Digital

Initial Experiences Developing Camera-Based Neutron Imaging Capabilities

Aaron E. Craft Idaho National Laboratory

AUNIRA Presented at TUM, FRM-II August 30, 2017

www.inl.gov

BRIEF Background

What we do at INL How we currently do NR Why it is important

First experiments with a camera-based system

Idaho National Laboratory - Overview

- Est. 1949 as the National Reactor Testing Station and Argonne-West
- Location of the first nuclear power plant in 1951
- Developed Navy nuclear propulsion systems
- First demonstration of the breeder reactor concept
- Designed, constructed and operated 52 nuclear reactors
- The United States' leading nuclear energy laboratory

Research and Educati

Idaho National Laboratory - Overview

• 2250 km² (~40× Manhattan, ~90% Luxembourg, 20× Paris, 37000× Louvre)

Materials and Fuels Complex

- 180 km of electrical transmission and distribution lines
- ~580 buildings
- 285 km of paved roads
- 300 metric tons of used fuel
- ~4000 employees
- 4 reactors

Current Neutron Radiography Capabilities

DYSPROSIUM

INDIUM

6

Neutron Tomography from Film Radiographs

- Requires expensive and time-consuming acquisition of a full set of radiographs
 - Costly, but provides extremely valuable data

Development of Computed Tomography

- Computed tomography was performed to determine coolant channel gap widths of the AFIP-7 element
- Limited angle tomograph:
 - 42 projections at 1.25° increments,
 - Total of 252 radiographs (very costly and time-consuming)
- Illustrates the need for digital systems before CT can be used routinely
- Performing neutron computed tomography without a digital neutron imaging system is like "having your cart before your horse;" it may work but it's not recommended

Radiographs of AFIP-7 fuel assembly at three different angles.

3D reconstruction of a 36 cm axial segment of 4 fuel plates inside aluminum cladding.

Neutron Imaging Goals

Radiography of Radioactive Specimens

Some neutron radiography systems are <u>not</u> gamma sensitive

- Direct method
- ✓ Indirect (transfer) method
- Scintillation screens and CCD camera
- Multi-Channel Plate (MCP) detectors

←Been doing for ~45 years

Radiography of Radioactive Specimens

Some neutron radiography systems are <u>not</u> gamma sensitive

- Direct method
- ✓ Indirect (transfer) method
- Scintillation screens and CCD camera
- Multi-Channel Plate (MCP) detectors

← Exploring other options

Developing a Scintillator-CCD System

- Digital capabilities in the North Radiography Station (NRS) will enable evaluation of non-rad objects developed at INL.
 - Fuel cells, batteries, homeland security, petroleum industry, material fabrication processes, hydridization of zircaloy, etc.
 - Could provide digital neutron imaging of dynamic processes.
- Purchased a system with a 10 cm × 10 cm FOV and a nice camera.
- Other activities showed high radiation background in the NRS, so we wanted to test a less-expensive system first to get some experience.

Andor iXon Ultra 888; Andor Technology Ltd.

ZWO 178 MM Cool

When Trying Something New, Talk to an Expert

Collaborations at INL

- Invited Burkhard Schillinger to visit INL.
- Prior to his arrival:
 - Ordered various equipment prior to activities.
 - Cameras, lenses and adapters, scintillator screens, cables, shielding materials, light-tight enclosure materials, stepper motors, et al.
 - We did not want to be limited by materials.
 - Built and prepared a few things ahead of time.
 - Avoid wasting time. Plan ahead as best possible.
 - Selected some important system variables.
 - Desired field of view (FOV).
 - Location of installation.
 - Prepare colleagues and required resources.
- Then it's time to get to work. (*i.e. Burkhard arrives*)

You have only three working days to build your system. Get started!

Overview of Tasks

- Day 1:
 - Evaluate available materials. (Get any additional materials you need)
 - Take measurements with various camera and lens combinations.
 - Build and test a control system for integrating the motors and camera.
 - Choose a system configuration that works.
- Day 2:
 - Assemble the system and prepare for installation in the beam.
 - Troubleshooting.
- Day 3:
 - Install and test the system.
 - Troubleshooting.
- Success: Produce a digital neutron radiograph with a camera-based system for the first time.

Test Combinations of Cameras and Lenses

- Measured distance from the CCD chip (*not the lens*) to image plane for each combination.
 - Provides a coarse focus; fine tuning comes later.
 - This knowledge saves time later when designing a system or making adjustments.
- A lens has a range of object-detector distances (ODD) in which it can focus.
 - If the distance is less than this, the lens must move away from the CCD to focus.
 - Spacers (i.e. shims) can be placed between the camera and lens to provide the needed separation distance.

Chosen system:

- ZWO 178 MM Cool (~\$700) 3096×2080 pixels, 2.4 µm pixels, 14-bit ADC
- 25 mm lens
- ODD ~762 mm
- 1.0 mm spacer between camera and lens

	Camera	Lens	Focus Distance (mm)
)	ATIK 414 EX	35 mm	825
		25 mm	626
		16 mm	375
	ZWO 174 MM Cool	50 mm	940
		35 mm	692
		25 mm	495
	ZWO 178 MM Cool	25 mm	762
		16 mm	445

Overview of Tasks

- Day 1:
 - Evaluate available materials. (Get any additional materials you need)
 - Take some basic measurements with cameras and lenses.
 - Build and test a control system for integrating the motors and camera.
 - Need a way to simultaneously control the rotation stage and image acquisition.
 - Choose a system configuration that works.
- Day 2:
 - Assemble the system and prepare for installation in the beam.
 - Troubleshooting.
- Day 3:
 - Install and test the system.
 - Troubleshooting.
 - Produce a digital neutron radiograph with a camera-based system for the first time.

"How to set up the Raspberry Pi and Gertbot as a tomography controller" Document available

A Few System Design Parameters

- Camera centered at the center of the beam, 53 cm above the floor
- Reactor at 250 kW, L/D_{eff}=270, φ≈2.0×10⁶ n/cm²s
- Used an inexpensive ZWO 178MM Cool with Sharp Cap 2.9 free software
- Radiation shielding for the camera and electronics
 - Lead bricks around the camera, at least 5 cm thick, preferably more
 - Borated poly (B_4C /silicone and B_4C /polyethylene)
 - Lithiated polyethylene purchased but not used because of fast neutron generation.
 - A particle transport model would be very beneficial for designing shielding

Testing Connections and Focusing Camera

Shielding the power supply for the rotation motor

Stacking the shielding

Shielding Materials

Object -

Converter Screen

26

First Light

First Light

Celebrating Success

Got the system up and running with help from a colleague and learned many lessons

Digital improvements

INL researchers and a visiting German colleague produced the first digital neutron radiographs using a modern camera-based neutron imaging system at NRAD.

Running Solo Shortly After the Visit

- A second test using this system examined a surrogate prismatic fuel element with engineered flaws inside coolant channels.
- The sample rotation stage was mounted to a linear stage so it could be remotely positioned so a light image could be acquired.
- Widened the gap for somewhat improved ventilation.

Ceptuning: D frames (D dropped) in 0:00:04, current exposure 20.0s , last frame 20.4s (Cooler at 100%, Temp -14.1C, Target -15.0C)

🗰 00:26/-00:06 Time left: 00:06 (ETA 8:52 AM) 📷

Frame a

Orthogonal Views

Running Solo Shortly After the Visit

- The system was able to acquire 32 neutron radiographs in under 12 minutes.
 - Current production is limited to ~14 film radiographs per day.
- Radiographs acquired with specimen rotated at 10° increments.
 - An upset in the USB hub stopped acquisition after 32 radiographs.
- No single radiograph clearly shows the feature, but it becomes clear as the object • rotates. Tomography should provide additional and higher-quality information.

Close-up view of the object positioned in front of the scintillator screen.

radiographs of the surrogate prismatic fuel element.

Challenges

- Access to the beamline hutch should be made as simple a procedure as possible. Multiple entries are inevitable.
 - Iris needs adjusted or lens refocused.
- Very high background radiation causes upsets in electronics.
 - Very high gamma and epithermal neutron content.
 - Need to improve the shielding approach for camera.
 - Perhaps modification of the neutron beamline.
 - Move all nonessential electronics outside the bunker.
- Cooling the camera.
 - Initially -15°C, but could only get to -10°C after an hour due to heat building up in the lead shielding.
 - Need more ventilation through camera shielding or water cooling.
- This valuable experience helped us to be able to operate the system on our own.

Idaho National Laboratory

Upcoming Activities

- Building two new systems with FOV's of 20 cm and 10 cm square.
- A double-mirror system should reduce scattered radiation to the camera.
- Camera mounted to a linear stepper motor for remote focusing.
- Radiation transport models under development to assess shielding options.

Supplemental Slides: More About NRAD

Idaho National Laboratory

Hot Fuel Examination Facility (HFEF)

- One of the world's largest inert atmosphere hot cells
- Primarily used for post-irradiation examination (PIE) of irradiated nuclear fuel experiments

$27 \text{ m} \times 9 \text{ m}$

NORTH

1.

dani

CAPACITY

NRAD Reactor

- Designed specifically for neutron radiography for PIE of fuel
- The NRAD reactor beneath the HFEF hot cell
 - 250 kW TRIGA
 - Two neutron beams
- Access to specimens in the hot cell
- A unique and valuable facility

NRAD Reactor

NRAD Reactor Core

Foil change stations

East Radiography Station (ERS)

- The ERS sits directly beneath the main hot cell
- A foil cassette is remotely moved behind the elevator

East Radiography Station (ERS)

Elevator positions specimens into the ERS cell

East Radiography Station (ERS)

- Category-I radiography facility according to ASTM standards
- Image area: 17.8 cm ×43.2 cm (7"×17")
- Neutron flux: ~9.5×10⁶ n/cm²-s
- L/D ratio: 50, 125, 300 (L = 4.45 m)

North Radiography Station (NRS)

North Radiography Station (NRS)

- NRS is <u>not</u> beneath the hot cell
- Equipment and specimens can be placed in the NRS cell by hand
- Easier access to NRS
- FOV up to 50 cm
- L/D ratio: 185, 300, 700
- Neutron flux: ~4.5×10⁶ n/cm²-s
- NRS is ideal for:
 - Detector development
 - Unirradiated objects
- Recovery of NRS is underway
 - Was used for other experiments

Radiography at the NRAD

- Transfer method radiography is currently employed at the NRAD
 - 1. Neutron beam passes through the specimen and activates the foils in the cassette

Radiography at the NRAD, cont.

- Transfer method radiography is currently employed at the NRAD
 - 1. Neutron beam passes through the specimen and activates the foils in the cassette

Radiography at the NRAD, cont.

- Transfer method radiography is currently employed at the NRAD
 - 2. Foils are removed from the cell and taken to a nearby dark room
 - 3. X-ray film placed into contact with the activated foils
 - 4. Decay radiation from foils exposes the film (over night)
 - 5. Film is developed and scanned

- This is typically the only radiography technique used for nuclear fuel
 - For highly radioactive objects, transfer method radiography is <u>still</u> the state of the art

Neutron Computed Radiography

- Developing a new capability that uses image plates (IP) for neutron computed radiography (nCR)
- Same transfer method as film

- IPs are reusable, but consumable