

Applications of Neutron Imaging in Research and Industry

Michael Schulz Heinz Maier-Leibnitz Zentrum (MLZ)

MLZ is a cooperation between:

Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung

Outline

- Complimentarity of neutrons and X-rays
- Why is it difficult to show industrial projects?
- Examples of some industrial and scientific applications
- Conclusions

How to obtain beam time at MLZ?

- 1.) scientific proposal (2 pages):
 - 2x per year; next deadline: 08.09.2017
 - Referees select ~30-50% of all proposals
 - several days of beam time in next 1/2 year

or

- "Rapid access, (within a few weeks): ~12h beam time (on selected instruments)
- -> results must be published -> beam time is free of charge + travel support!

2.) commercial beam time:

- no full proposal, no publication required, NDA can be set up.
- costs: 7.000€/day

Cooperation with FORD

Visual (destructive) check of filling level

I. Wehmeyer (Ford)

Comparison X-rays & Neutrons

X-Rays

I. Wehmeyer (Ford), B. Schillinger, R. Gilles (FRM II)

Neutrons

Neutron radiography Field of view: 120 * 120 mm Rear part of door (seen from inside) Front part of door

(seen from outside)

I. Wehmeyer (Ford), B. Schillinger, R. Gilles (FRM II)

Validation of neutron radiography

9

In-situ filling of Li-ion Pouch Batteries

Pouch Batteries

- High potential for electro mobility and stationary energy storage
- Electrolyte filling is a key process in cell production
- So far only limited knowledge about the process
- Phenomenological: pressure cycles to optimize wetting with electrolyte

Why Neutron Imaging?

- Cell housing optically intransparent
- Other approaches not successful
- Neutrons offer high contrast due to H-content in electrolyte

Goals

- Establish a new technique
- In-situ visualization of the wetting process
- Study and optimize influence of process parameters

Setup

Vacuum chamber: modified pressure test stand

Detector

Neutrons

Setup details

Setup with cell

Materials

Cell

- 5 Anodes,
- 4 Cathodes,
- z-folded
- ExZellTUM-format

Elektrolyte

- EC:EMC 3:7
- No LiPF6,
- No VC

Experiments

- 25 pre-defined pressure profiles
 - Two fundamental types: w/ and w/o wetting cycles before sealing
 - Reference experiments w/o pressure variation
 - Variation of pressure levels
 - No variation of of timing for pressure levels, filling and sealing within one profile
- Image acquisition every 15s
- Control of injection and sealing by the instrument control software

Quantitative Evaluation

- Higher wetting degree (t=850s) when applying wetting cycles
- No significant influence of wetting cycles after sealing
- Initial wetting degree depends on dosing pressure

Hydrogen storage

H₂ storage @ ANTARES: high resolution

Neutron Imaging study of promising class of Reactive Hydride Composite Materials

- powder samples in 3 mm boreholes of aluminum sample inlet (2 x ~75 mg)
- pressure (100 bar) & temperature (400° C) resistant cell made of 1.4401 steel
- Liquid phase of LiBH₄ (melting point 275° C) at operating conditions
- in situ monitoring of temperature, H₂ flow and pressure

H₂ storage @ ANTARES: high resolution

Forschungs-Neutronenquelle Heinz Maier-Leibnitz

> Tomography analysis of heated (355 $^{\circ}$ C) and pressurized (15 bar) sample after induction of phase transition (melting of LiBH₄):

- densification / sintering
- counteracts homogeneous material distribution and therewith absorption process

In situ Neutron Radiography study of sintering process: Difference data set, fast sintering ($\Delta t < 200 \text{ s}$) – heavily influencing material structure

H₂ storage @ ANTARES: high resolution

Neutron Tomography of MgH₂ pellets:

- effects of cycling on material structure
- effects of material processing conditions
- hydrogen distribution
- quality check

μ [1/cm] 5.243ε 4.5 3 1.5 0 -1.453

 Optimized processing parameters: homogeneous hydrogen distribution

H₂ storage @ NECTAR: large sample scales

- Investigation of scaled-up & pilot plant hydrogen storage tanks
- In situ Neutron Radiography & ex situ Neutron Tomography studies
- $t_{exp} \ge 120 \text{ s}$ @ pixel size 293 μm
- sample thickness up to 200 mm (100 mm steel)
- Investigation of macroscopic material structures, driving forces

Tympanic Hearing and bone-conduction hearing

from Tumarkin 1968

Hearing by bone conduction

Synapsid evolution

The origin of tympanic hearing

Massetognathus (Cynodontia), approx. 230 million years old

inner ear of Massetognathus

The origin of tympanic hearing

- short, tube-like cochlea in the cynodont therapsid *Massetognathus*
- 3,9 mm long
- enhanced sensitivity to high-frequency air-borne sound
- small stapedial footplate area (1,69 mm²)

Vapour transport in Wood Based Composites

- Mixture of fibres & resin
- Fabrication of panels by cold & hot pressing
- How does vapour move during hot pressing?
- Theories predict wavefront-like movement

Conclusion

- Neutron imaging has applications in many fields of science and technology
- Complementarity to X-rays justifies the effort
- Particularly the high sensitivity for hydrogen and the good penetration of many metals define the fields of applications
- There are many industrial projects which we can not show...

Thank You!