

Tomography with fission neutrons and Co-60

Dr. Thomas Bücherl Technische Universität München ZTWB Radiochemie München (RCM) Garching, August 29, 2017

ТUП

Content

- Motivation
- The NECTAR facility
- ITS
- Examples

 \triangleright

Why using

- different types of sources (neutrons, X-rays, γ -rays etc.)?
- different energies of these sources?

The term transmission

⊱d≯

Dr. Thomas Bücherl (TUM) | ZTWB Radiochemie München (RCM) | IAEA Training Workshop

Why using

- the mass absorption instead of the linear attenuation coefficient?

Often preferred in praxis (when using γ -rays) as it is

- nearly constant for γ -rays for important range of energies
- approximately the same for many elements
- accounts for different densities of materials

ТШП

Motivation

Mass attenuation coefficient values shown for all elements with atomic number Z smaller than 100 collected for photons with energies from 1 keV to 20 MeV. The discontinuities in the values are due to absorption edges which were also shown.

https://en.wikipedia.org/wiki/M ass_attenuation_coefficient#/ media/File:Photon_Mass_Atte nuation_Coefficients.png

Dr. Thomas Bücherl (TUM) | ZTWB Radiochemie München (RCM) | IAEA Training Workshop

Dr. Thomas Bücherl (TUM) | ZTWB Radiochemie München (RCM) | IAEA Training Workshop

ТШ

Motivation

Thickness of materials: 1 cm

Neutrons

thermal neutrons (E = 25 meV)

H₂O	D₂O	Mg	A
Cr	Mn	Fe	Ni
Cu	Zn	Nb	Мо
Cd	W	Pb	Bi

fast (fission) neutrons (E = 1.7 MeV)

H₂O	D₂O	Mg	A
Cr	Mn	Fe	Ni
Cu	Zn	Nb	Мо
Cd	W	Pb	Bi

Thickness of materials: 1 cm

X-rays and gamma-rays

X-rays (E = 120 keV)

H₂O	D₂O	Mg	A
Cr	Mn	Fe	Ni
Cu	Zn	Nb	Мо
Cd	W	Pb	Bi

gamma-rays (E = 1.25 MeV)

H₂O	D ₂ O	Mg	A
Cr	Mn	Fe	Ni
Cu	Zn	Nb	Мо
Cd	W	Pb	Bi

Thickness of materials: 1 cm

Fission neutrons and gamma-rays

fast (fission) neutrons (E = 1.7 MeV)

H₂O	D₂O	Mg	A
Cr	Mn	Fe	Ni
Cu	Zn	Nb	Мо
Cd	W	Pb	Bi

gamma-rays (E = 1.25 MeV)

H₂O	D₂O	Mg	A
Cr	Mn	Fe	Ni
Cu	Zn	Nb	Мо
Cd	W	Pb	Bi

NECTAR: NEutron Computerized Tomography And Radiography

Facility offering fission neutrons for investigations.

In the near future also offering thermal neutrons, too!

Dr. Thomas Bücherl (TUM) | ZTWB Radiochemie München (RCM) | IAEA Training Workshop

Medical application

Zwischenwand

Dr. Thomas Bücherl (TUM) | ZTWB Radiochemie München (RCM) | IAEA Training Workshop

converter/scintillator:

converts neutrons into visible light. (e.g. ZnS(Ag) in PP)

Sketch of conversion process

Fission neutron spectrum

 E_{mean} = 1.8 MeV Φ_{min} = 8.7E+05 cm⁻²s⁻¹ Φ_{max} = 4.7E+07 cm⁻²s⁻¹ (L/D)_{max} ~ 233

Sample space (max) 80 cm x 80 cm x 80 cm ~ 800 kg

Detection system Converter and CCD-camera FOV ~ 30 cm x 30 cm

ITS: Integrated Tomography System

Source

type: radioactive nuclide source: ⁶⁰Co activity: 1.7E+13 Bq half-life: 5.27 a

collimator

fan-beam geometry height: 2 cm opening angle: 30°

Shielding container material: depleted uranium weight: ca. 300 kg

Source

type: radioactive nuclide source: ⁶⁰Co activity: 1.7E+13 Bq half-life: 5.27 a

collimator

fan-beam geometry height: 2 cm opening angle: 30°

Shielding container material: depleted uranium weight: ca. 300 kg

Detection system

type: photon counting system components:

- collimator
- 30 plastic scintillators
- 30 photomultipliers
- counting electronics

ТЛП

The ITS facility

Detection system

type: photon counting system components:

- collimator
- 30 plastic scintillators
- 30 photomultipliers
- counting electronics

collimator

height: 0 cm - 1 cm width/channel: 2 mm (fixed) arranged on a 30° arc

Dr. Thomas Bücherl (TUM) | ZTWB Radiochemie München (RCM) | IAEA Training Workshop

TUT

The ITS facility

Detection system

type: photon counting system components:

- collimator
- 30 plastic scintillators
- 30 photomultipliers
- counting electronics

@RCM mainly used for nondestructive characterization of radioactive waste packages

Examples @NECTAR and @ITS

squared timber

3D-tomography @NECTAR

squared timber

3D-tomography @NECTAR

influence of absorbers

2D-tomography @NECTAR

Dr. Thomas Bücherl (TUM) | ZTWB Radiochemie München (RCM) | IAEA Training Workshop

glued laminated wood – investigation of the glue layers

Dimension: 1000 mm x 492 mm x 235 mm

radiography @ITS

glued laminated wood – investigation of the glue layers

2D-tomography @ITS

glued laminated wood – investigation of the glue layers

glued laminated wood – investigation of the glue layers

information on glue layers available!

radiography and 3D-tomography @NECTAR

Motor of an old motorbike

radiography @ITS

Motor of an old motorbike

2D-tomography and radiography @ITS

gear box of a modern car

radiography @ITS

gear box of a modern car

variation of greyscale

radiography @ITS

Dr. Thomas Bücherl (TUM) | ZTWB Radiochemie München (RCM) | IAEA Training Workshop

gear box of a modern car

2D-tomography @ITS

gear box of a modern car

radiography @NECTAR

gear box of a modern car

radiography @NECTAR

gear box of a modern car

comparison

radiography @NECTAR and @ITS

artillery shell

radiography @ITS

Examples (art history)

statue

radiography @ITS

Examples (art history)

duelling pistol, statue

magnificated

radiography @NECTAR

Examples ("real" time measurements)

water uptake of a trunk

iron cylinder to avoid floating of trunk when water is added

Sample: trunc (Ø about 12 cm)

Parameter $\Phi = 5.4 \cdot 10^5 \text{ cm}^{-2}\text{s}^{-1}$ L/D = 233 ± 16 $\Delta t = 62.2 \text{ s}$

$$t_{total} = 2000 \text{ min}$$

V_{water}= 250 ml

Examples ("real" time measurements)

water uptake of a trunk

Reference image

Image after 1000 min

Examples ("real" time measurements)

water uptake of a trunk

Quantitative evaluation:

$$V = 3.3 + 1.1 \cdot 10^{-2} \cdot t + 53.2 \cdot \left(1 - \exp\left(-3.4 \cdot 10^{-3} \cdot t\right)\right)$$

Within the first 2000 min, there are two mechanisms:

t < 750 min: soaring within the bark ⇒ exponential rise

750 min < t < 2000 min:

water uptake in the inner part of the trunk becomes dominant ⇒ <u>linear function</u>

200-L waste packages

Dr. Thomas Bücherl (TUM) | ZTWB Radiochemie München (RCM) | IAEA Training Workshop

200-L waste packages

radiography @ITS

200-L waste packages

2D-tomography @ITS

200-L waste packages

3D-tomography @ITS

200-L waste packages – feasibility test @NECTAR

200-L waste packages – feasibility test @NECTAR

preparation of mock-up drum

200-L waste package

radigraphy @NECTAR and @ITS

NBA ("Normalbetonabschirmung")

radiography @NECTAR

How to get beam time at NECTAR

- get into contact with me (<u>thomas.buecherl@tum.de</u>) or Malgorzata Makowska (<u>Malgorzata.Makowska@frm2.tum.de</u>)
- discuss feasibility of planned measurement
- submit a proposal (see <u>http://mlz-garching.de/user-office</u>)
- if accepted, contact me for arranging beam time

TUN

TIT * * *