

NEUTRON GRATING INTERFEROMETRY PART II

QUANTITATIVE DFI

Alexander Backs

alexander.backs@frm2.tum.de

Dark Field Images

nGI reveals scattering

- from small structures (~ μm)
- under very small angles

What does that mean exactly ?

Quantitative DFI: Size Matters

Model Case: One Single Scattering Angle

without sample:

$$V_{ob} = \cos(x)$$

Model Case: One Single Scattering Angle

without sample:

$$V_{ob} = \cos(x)$$

with sample:

$$V_s = \frac{1}{2}\cos(x+\vartheta) + \frac{1}{2}\cos(x-\vartheta)$$

Model Case: One Single Scattering Angle

 $\xi_{GI} = \lambda \frac{L_{s,eff}}{}$

 p_2

Real Case: Distribution of Scattering Angles

$$DFI = \cos(\xi_{GI}q_x)$$
$$\square FI = \int S(q_x) \cos(\xi_{GI}q_x) dq_x$$

Real Case: Distribution of Scattering Angles

 $S(q_x)$ "probability of scattering a neutron with a certain momentum transfer q_x "

What defines $S(q_x)$?

Reciprocal Space: the differential cattering cross section (looking at momenum)

Reciprocal Space: the differential cattering cross section

(looking at momenum)

Real space: the pair correlation function (looking at space coordinates)

$$\gamma(r) = \int_{V} \Delta \rho(R) \Delta \rho(R+r) dR$$

Distribution of scsattering strength

Reciprocal Space: the differential cattering cross section

(looking at momenum)

 $\frac{d\sigma(q)}{d\Omega} = \frac{\text{neutrons scattered into } d\Omega}{\text{incoming neutrons per unit area}}$

Real space: the pair correlation function (looking at space coordinates)

Distribution of scsattering strength

 $S(q_x)$: Reducing the Dimensions

Step 1: no scattering along the beam direction $q_z = 0$

 $S(q_x)$: Reducing the Dimensions

Step 1: no scattering along the beam direction $q_z = 0$

Step 2: projection along the grating lines

 $q_{y} = -\infty \rightarrow +\infty$

$$\left(\frac{d\sigma(q_x)}{d\Omega}\right)_{slit} = \int \frac{d\sigma(q_x, q_y, 0)}{d\Omega} dq_y$$
$$\implies \quad G(x, y) \to G(x, 0)$$

Reciprocal Space:

T. Reimann, Ph.D. Thesis (2016)

29.08.2017

Reciprocal Space:

29.08.2017

- IAEA workshop AUNIRA -

alexander.backs@frm2.tum.de

Polysterene Colloids in Solution

Pair Correlation Function

Polysterene Colloids in Solution

Pair Correlation Function

calculate:	fourier transform:
$\gamma(x,y,z)$	$\frac{d\sigma(q_x, q_y, q_z)}{d\Omega}$
G(x,y)	$\frac{d\sigma(q_x,q_y,0)}{d\Omega}$
G(x,0)	$\left(\frac{d\sigma(q_x)}{d\Omega}\right)_{slit}$

Real Space

Reciprocal Space

Real Space: Pair Correlation function Reciprocal Space: Scattering cross section

T. Reimann et al., J.Appl.Cryst. (2016)

Polysterene Colloids in Water

R dependence:

•
$$G = G(R)$$

•
$$\Sigma = \Sigma(R)$$

λ dependence:

•
$$\xi_{GI} = \xi_{GI}(\lambda)$$

• $\Sigma = \Sigma(\lambda)$

T. Reimann et al., J.Appl.Cryst. (2016)

alexander.backs@frm2.tum.de

DFI depends only on one value of the pair correlation function $G(\xi_{GI})$

More information can be gained by:

Changing G

Different particle sizes

• Only possible in rare cases

Inhomogeneous Scattering

Inhomogeneous Scattering

 $\left(\frac{d\sigma(q_x)}{d\Omega}\right)_{slit}$ depends on the relative orientation of sample and gratings

Inhomogeneous Scattering

 $\left(\frac{d\sigma(q_x)}{d\Omega}\right)_{slit}$ depends on the relative orientation of sample and gratings

$$DFI(\omega) = exp\left[\Sigma t \left(\frac{G(\xi_{GI}\cos(\omega), -\xi_{GI}\sin(\omega))}{G(0)} - 1\right)\right]$$

Anisotropic scattering in Brass

Extrusion Moulded Brass: anisotropic

- production
- crystallites
- scattering

T. Neuwirth, Master Thesis (2017)

Different distribution of crystallite size in x and y direction

Bi gaussian scattering cross section

$$DFI(\omega) = exp\left[-\frac{\xi_{GI}}{2}(\sigma_x^2 + (\sigma_y^2 - \sigma_x^2)sin^2(\omega - \varphi))\right] \qquad \sigma_{an} = \sigma_x^2 - \sigma_y^2$$

 σ_x^2

Different distribution of crystallite size in x and y direction

Bi gaussian scattering cross section

$$DFI(\omega) = exp\left[-\frac{\xi_{GI}}{2}(\sigma_x^2 + (\sigma_y^2 - \sigma_x^2)sin^2(\omega - \varphi))\right] \qquad \sigma_{an} = \sigma_x^2 - \sigma_y^2$$

 $\boldsymbol{\varphi}$

Different distribution of crystallite size in x and y direction

Bi gaussian scattering cross section

$$DFI(\omega) = exp\left[-\frac{\xi_{GI}}{2}(\sigma_x^2 + (\sigma_y^2 - \sigma_x^2)sin^2(\omega - \varphi))\right] \qquad \sigma_{an} = \sigma_x^2 - \sigma_y^2$$

 $DFI(\omega)$

T. Neuwirth, Master Thesis (2017)

The Intermediate Mixed State in Niobium

scattering contrast

The Intermediate Mixed State in Niobium

T. Reimann, Ph.D Thesis (2016)

Heterogeneous Phase transition

From USANS to nGI

From USANS to nGI

Magnetic Field Scan

Domain size changes (USANS result)

Wavelength Scan

Probed ξ_{GI} changes

T. Reimann, Ph.D Thesis (2016)