Design of the neutron guide system for the PIK reactor

Peter Konik, Konstantin Pavlov, Yurii Kireenko, Evgeny Moskvin, Vladislav Tarnavich, Sergey Grigoriev

15 May 2018
PIK reactor
Main parameters

Main parameters

- Thermal power 100 MWt
- Fuel HEU
- Reflector D$_2$O
- Max flux (central channel) 5×10^{15} n/s/cm2
- Max flux (reflector) 1.3×10^{15} n/s/cm2
- 10 horizontal beamtubes
- 2 CNS and 1 HNS planned

Reactor starts in late 2018!
Cold neutron source

Configuration

- **Core**
- **CNS Beamtube N3**
- **Shutter Guides** (not precise)

Dimensions:
- **780 mm**
- **220 mm**
- **967 mm**
- **1820 mm**

Beamtube N3

120x200 -> 320x200 mm2
Cold neutron source
Comparable to the ILL VCS

Brilliance

Flux

2nd CNS of HCS-type is planned
Our task
Neutron guide system

Design features

- Extensive use of modern optics
- One guide — one instrument

Restrictions

- Only one beamtube!
- Beam requirements not frozen
- Narrow space in the bunker (25 m)
- 11.5^0 between beamtube axis and guide hall axis
- Time and budget constraints

Instrumentation
14 cold instruments in the guide hall

I stage 2014–2018 (Modernization)
- 2× SANS
- 2× reflectometers
- SESANS
- DCD

PIK-GGBase collaboration

II stage 2017–2021 (New instruments)
- Powder diffractometer
- 2× SANS
- 2× reflectometers (1 replacement)
- TAS
- Direct TOF spectrometer
- NSE spectrometer
- DEDM (fundamental physics line)

Additional thermal instruments from the reactor hall
General approach for the design

1. Define the beam requirements for each of the instruments and optics needed
 - Some are known from the previous experience
 - Some need additional study
2. Group the instruments according to the defined requirements
3. Fill the guide hall with instruments
4. Optimize horizontal shape of each guide
 - Curvature radii
 - Bender length
 - Focusing noses
5. Optimize vertical shape of each guide
6. Check the effect of the shutter optics (∼970 mm from the CNS)
Monochromatic instruments optics

Constant cross-section is preferable

Elliptic guides performance

Ellipse

Constrained ellipse

Nosed guides are preferable
Tilting the beam

Divergence = ±0.5°, lambda = 5

\[\text{L}_{\text{cen}} \% \]

\[\text{L}_{\text{tot}} \text{[m]} \]
<table>
<thead>
<tr>
<th>Guide</th>
<th>Instruments</th>
<th>Main features</th>
</tr>
</thead>
<tbody>
<tr>
<td>H0</td>
<td>DEDM (f.physics)</td>
<td>«general purpose»</td>
</tr>
<tr>
<td></td>
<td>ColdTAS</td>
<td>straight, h-focusing nose</td>
</tr>
<tr>
<td>H1</td>
<td>PD, cm-Ref</td>
<td>c-curved</td>
</tr>
<tr>
<td>H2</td>
<td>h-Ref, v-Ref</td>
<td>v-nosed, 2 branches</td>
</tr>
<tr>
<td>H3</td>
<td>3 × SANS, SESANS, NSE</td>
<td>5 branches</td>
</tr>
<tr>
<td>H4</td>
<td>TOF</td>
<td>vh-nosed</td>
</tr>
<tr>
<td>H5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hall plan
Saving space for the future

High instrument density!

- put some instruments outside of the guide hall
- classify instruments into «lateral» and «straight» beamlines
- special cases of NSE and TOF
Loss factors

<table>
<thead>
<tr>
<th>L</th>
<th>S</th>
<th>wavy</th>
<th>R_0</th>
<th>A_v</th>
<th>A_h</th>
<th>A_{rot}</th>
<th>shift</th>
<th>gap</th>
<th>all</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>30×30</td>
<td>0.97</td>
<td>0.88</td>
<td>1.00</td>
<td>0.94</td>
<td>1.00</td>
<td>0.98</td>
<td>1.00</td>
<td>0.80</td>
</tr>
<tr>
<td></td>
<td>30×60</td>
<td>0.99</td>
<td>0.91</td>
<td>1.00</td>
<td>0.94</td>
<td>1.00</td>
<td>0.99</td>
<td>1.00</td>
<td>0.86</td>
</tr>
<tr>
<td></td>
<td>30×120</td>
<td>0.99</td>
<td>0.93</td>
<td>1.00</td>
<td>0.94</td>
<td>1.00</td>
<td>0.99</td>
<td>1.00</td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td>30×180</td>
<td>0.99</td>
<td>0.93</td>
<td>1.00</td>
<td>0.95</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.88</td>
</tr>
<tr>
<td>30</td>
<td>30×30</td>
<td>0.91</td>
<td>0.70</td>
<td>1.00</td>
<td>0.83</td>
<td>1.00</td>
<td>0.96</td>
<td>1.01</td>
<td>0.54</td>
</tr>
<tr>
<td></td>
<td>30×60</td>
<td>0.93</td>
<td>0.76</td>
<td>1.00</td>
<td>0.83</td>
<td>0.99</td>
<td>0.96</td>
<td>1.00</td>
<td>0.59</td>
</tr>
<tr>
<td></td>
<td>30×120</td>
<td>0.95</td>
<td>0.80</td>
<td>1.01</td>
<td>0.83</td>
<td>0.99</td>
<td>0.97</td>
<td>1.00</td>
<td>0.64</td>
</tr>
<tr>
<td></td>
<td>30×180</td>
<td>0.95</td>
<td>0.81</td>
<td>1.01</td>
<td>0.83</td>
<td>0.99</td>
<td>0.98</td>
<td>1.00</td>
<td>0.66</td>
</tr>
<tr>
<td>60</td>
<td>30×30</td>
<td>0.84</td>
<td>0.52</td>
<td>1.00</td>
<td>0.69</td>
<td>0.99</td>
<td>0.91</td>
<td>1.00</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td>30×60</td>
<td>0.87</td>
<td>0.61</td>
<td>1.00</td>
<td>0.68</td>
<td>1.00</td>
<td>0.94</td>
<td>1.00</td>
<td>0.38</td>
</tr>
<tr>
<td></td>
<td>30×120</td>
<td>0.89</td>
<td>0.65</td>
<td>0.99</td>
<td>0.68</td>
<td>0.99</td>
<td>0.95</td>
<td>0.99</td>
<td>0.43</td>
</tr>
<tr>
<td></td>
<td>30×180</td>
<td>0.91</td>
<td>0.67</td>
<td>1.00</td>
<td>0.71</td>
<td>0.98</td>
<td>0.95</td>
<td>1.00</td>
<td>0.45</td>
</tr>
<tr>
<td>100</td>
<td>30×30</td>
<td>0.77</td>
<td>0.37</td>
<td>1.00</td>
<td>0.53</td>
<td>0.99</td>
<td>0.86</td>
<td>1.00</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>30×60</td>
<td>0.81</td>
<td>0.45</td>
<td>0.99</td>
<td>0.53</td>
<td>0.98</td>
<td>0.89</td>
<td>0.99</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>30×120</td>
<td>0.84</td>
<td>0.51</td>
<td>0.99</td>
<td>0.55</td>
<td>0.97</td>
<td>0.91</td>
<td>0.99</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>30×180</td>
<td>0.85</td>
<td>0.54</td>
<td>0.99</td>
<td>0.55</td>
<td>0.96</td>
<td>0.92</td>
<td>0.99</td>
<td>0.27</td>
</tr>
</tbody>
</table>
Summary

- PIK reactor will start by the end of 2018
- The general approach to design guide system is presented
- The current system design is presented
- Acknowledgment to NSAC members
Thank you for attention!