DE LA RECHERCHE À L'INDUSTRIE

ENGINEERING AND SAMPLE ENVIRONMENT OF SANS

Cremlin 2018

Petergof | Sylvain Désert

MAY 15TH 2018

www.cea.fr

PA20

10⁻³ <Q_{MIN}< 1 Å⁻¹


```
DE LA RECHERCHE À L'INDUSTRI
```


MONOCHROMATOR AND POLARIZATION CASEMATE

DE LA RECHERCHE À L'INDUSTRI

CASEMATE

CASEMATE – INSIDE VIEW

Polarizer tank - 1.5 m

Spin Flipper – 50 cm

DE LA RECHERCHE À L'INDUSTR

POLARIZER

- Free position
- Guide
- Polarizer (double V-cavity) with P ~ 99%@4Å (Swiss Neutronics)

COLLIMATOR

16 m overall length

- 4 elements of 3.75 m in Al
- 2 supports
- Vacuum 0.1 mbar
- Attenuator wheel at entrance
- Telescopic nose at exit
- Inspection hatches

(Thales)

SANS MODE

Rectangular apertures with slits Up to 85(H) x 25(W) mm²

6 collimation lengths : 19, 16, 12, 8, 4, 2 m

16 positions attenuator wheel in front of the collimator

"standard" collimation : 25x25 mm² entrance and 12.5x12.5 mm² exit i.e. full use of beam width

GISANS MODE

For surface studies

1) Incident angle on the sample with a thin rectangular beam either vertical or horizontally (for liquids)

2) Beam axis centered and sample rotated (not for liquids)

VSANS MODE

Two sets of lenses inserted in the rear part of the collimator in front of the sample

Qmin (1/Å)	l (Å)	L (m)	Lens number
4E-04	9.2	19	19
6E-04	9.2	19	19
8E-04	6.5	19	37
1E-03	8.4	12	37

Target : Q_{min}= 4.10⁻⁴ Å⁻¹

4 DoF for alignment

Lift

Polarization of the beam before the collimator

must be kept up to the sample for 4+ Å neutrons

 \Rightarrow Use of a guide field

With constraints:

- Distance between bottom and upper plate = 239 mm (to fit the guides)
- No magnetic parts inside the magnetic field
- No long space without magnetic guide field
- Removable telescopic plates (+300/-0 mm) to guide until the sample

All the magnets are set along the same direction

Magnetic field is guided by the iron plates and loops homogeneously over the beam

DE LA RECHERCHE À L'INDUSTRIE

Cea

GUIDE FIELD - SIMULATIONS

Only component is 35 G vertical (By)

DE LA RECHERCHE À L'INDUSTRIE

Cea

GUIDE FIELD - SIMULATIONS

35 G vertical (By) and 2 G longitudinal (Bz)

DE LA RECHERCHE À L'INDUSTRI

GUIDE FIELD

- Dedicated tool required for plate handling

Guide element Length =1250 mm, m=1

3 elements : 3750 mm, ~60 kg and 2 elements of 1250 mm

GUIDE TRANSLATION

Unconstrained move: one motor, side rollers

Rail, motors and encoders located under the Fe plates

BLINDS

Slim (50 mm) for insertion/removal without impact on the plates

Max opening 100 mm vertical and horizontal

4 independent blinds

to cover any part of the incoming guide and shift the beam axis for GISANS

B4C frame covering whole guide section but the beam (to isolate noise)

BLINDS - MOTORIZATION

Motors and encoders outside the Fe plates→ No interaction with guide field

4 motors : one by plate

End switch and anti-collision sensors

Slim absolute encoder (*Hengstler*, ϕ 40 mm) \rightarrow 60 mm maximum gap between Fe plates

cea

BLINDS - ABSORBERS

Composite assembly:

- 5 mm B4C :
 - stop most of incoming neutrons
 - low γ radiation
 - slope to avoid reflection
- 1 mm Cd :
 - sharp machining
 - high neutron capture

CEA TELESCOPIC NOSE

Telescopic nose and independent telescopic guide field

500 mm -0 /+300 mm

Diaphragm holder at the edge

Stainless edge welded bellow

Threaded rod

Cea COLLIMATOR SUPPORT

Only 2 supports (2 temporary supports during assembly)

➔ Offers easy alignment

19 M COLLIMATION

Sample to detector distance = 19 m to get a 2x19 m instrument

→ Incompatible with polarization mode

DE LA RECHERCHE À L'INDUSTRI

Cea SAMPLE ENVIRONMENT ACCESS

Side access

Platform for top access & storage

SAMPLE POSITIONING

6 DoF:

X 50 mm Y 300 mm Z 300 mm (manual) θ_{X} +/- 15° θ_{Y} +/- 180° θ_{Z} +/- 15°

 $\theta_{\rm Y}$ +/- 180° for EM (independent)

(Positechnics)

DE LA RECHERCHE À L'INDUSTRI

ELECTROMAGNET 2T

- 500 kg
- 60 A
- Perpendicular magnetic fields

Cea ELECTROMAGNET

3470 1.8T @ 10 mm 5 A

5403 FG 1.6T @ 10 mm 50 A

(GMW Associates)

- Perpendicular & Longitudinal magnetic fields
- Crycooler insertion possible (loss of B max)

DE LA RECHERCHE À L'INDUSTRI

ea SUPRA COIL 10T – 4K

Easier to prepare than Cryostats:

- No filling
- No pre-cooling
- No required supply around
- Approx. 1 hour to get to 7K

(ARS Cryo : DE 204)

Standard:

- -10 to 80°C
- Close-loop with probe
- Computer control & record

ea 2D SAMPLE CHANGER

- 24 positions
- Temp controlled
- Optionnal vessel for He circulation

DE LA RECHERCHE À L'INDUSTRIE

Cea

MINIMIZING AIR GAP

cea DETECTOR TANK

- V = 63 m³
- L=19 m
- AI 5754
- (SDMS)

DE LA RECHERCHE À L'INDUSTRI

VACUUM

Automat (survey & nose exchange)

Vacuum hoses

- 1 primary pump
- 1 secondary pump

(1 bar to 100 mbar) (100 mbar to 1 mbar)

→ 1 bar to 1 mbar in 2 hours
→ 70 dB max

DE LA RECHERCHE À L'INDUSTR

ALIGNMENT


```
DE LA RECHERCHE À L'INDUSTRIE
```


REAR DETECTOR CARRIAGE

DE LA RECHERCHE À L'INDUSTRIE

REAR DETECTOR (1.4 – 19 M)

- Multi Anode ³He (ILL)
- $S = 64x64 \text{ cm}^2$
- 128 rectangular channels of 5 mm

FRONT DETECTOR (1 – 9 M)

- 32 tubes (16 Hor. and 16 Ver.)
- ~ same plane (13 mm shift)
- Diam. 13 mm, 10 bars ³He
- S=64x20 cm²
- Tx and Ty = 200 mm

DE LA RECHERCHE À L'INDUSTRI

Detector, carriage : 400 kg Cables : 100 kg

19 m in approx. 10 min

Rack & pinion

Cea RELIABLE POSITIONING

Conical shape Circular/elongated holes →Reliable positioning on support

> Side tabs Indent machined on magnet →Reliable positioning on magnet

 \rightarrow Whole device hidden behind a 25x25 mm² BS

 \rightarrow Hollow AI rods transparent to neutron

Cea FLOOR LOAD (2T/M2)

DE LA RECHERCHE À L'INDUSTRI

ELECTRONICS

- Takes place
- Needs spare
- Needs to be well referenced
- Ethernet cards for long distances

DE LA RECHERCHE À L'INDUSTR

Cea FACTORY ACCEPTANCE TESTS

Portable electronic rack & dedicated computer

Electronicians test all the axes prior to FAT

- → All axes ready for FAT
- → Plug'n Play when component is delivered

- Official team with steering comitee
- 1 lead Scientist + 1 lead Engineer
- Establish clear task allocation
- Compulsory periodic meeting
- Live planning

DE LA RECHERCHE À L'INDUSTR

PLANNING

DE LA RECHERCHE À L'INDUSTR

AKNOWLEDGEMENT

LLB Staff **Design office** P. Permingeat P. Lavie Polarization S. Klimko Motion control F. Coneggo P. Lambert W. Josse G. Koskas Call for tenders S. Rodrigues **Technicians** M. Detrez S. Gautrot A. Helary **Scientists** G. Chaboussant J. Jestin A. Brûlet

International Society of Neutron Instrument Engineers

7th Design and Engineering of Neutron Instruments Meeting 2018

DENIM 2018

16-19 September 2018 Paul Scherrer Institut

Europe/Zurich timezone

Overview

Programme Overview

Timetable

We are pleased to announce that the 7th Design and Engineering of Neutron Instruments meeting will be held at PSI, Switzerland, from September 16 to 19, 2018. This will prove to be an essential conference for all engineers and technicians interested in the project management, design, specification, fabrication, acceptance testing, operation maintenance and upgrades of neutron scattering instruments. We look forward to seeing you in the heart of Europe next autumn.

DE LA RECHERCHE À L'INDUSTRIE

MIRROR FOCUSING

KWS3 @ FRM2

RECHERCHE À L'INDUSTRI

DE LA RECHERCHE À L'INDUSTRIE

BEAMSTOP MOVIE

DETECTOR INSERTION

Electromagnet <u>WITH</u> permanent magnet

No current = magnetic field

Current = No magnetic field

B4C 5 mm Al plate 2 mm Steel mounting BS weight 40-150 g

$$\omega_L > 10. \omega_B$$

 $\omega_L = \gamma * B$ Larmor precession frequency

 $\omega_B = v \frac{d\theta_B}{dy}$ Angular magnetic field rotation

$$\frac{d\theta_B}{dy} < 2.65B\lambda \qquad \begin{array}{l} \theta_B \ [°] \\ dy \ [cm] \\ B \ [mT] \\ \lambda \ [Å] \end{array}$$

$$\omega_I > 22. \ \omega_B \ @ \ \lambda = 4 \ \text{\AA}$$

DE LA RECHERCHE À L'INDUSTR

First Results / SANS

Spacing : 100 nm Pore size : 40 nm

First Results / GISANS

GISANS on nanostructured CoSiO₂ / Si wafer

DE LA RECHERCHE À L'INDUSTRIE

First Results / GISANS

Reflectometry on a Si wafer

λ= 7 Å Collimation : 2m Diaphragmes : 1mm*25mm

First Results / GISANS

Reflectometry on on nanostructured CoSiO₂ / Si wafer

presence of weak stripe domains in the λ superferromagnetic phase

λ= 7 Å Collimation : 2m Diaphragmes : 1mm*25mm

DE LA RECHERCHE À L'INDUSTRI

Cea VELOCITY SELECTOR

Telescopic support for maintenance

No vibration

- ✓ Upward guide removal => fast neutrons passed
- ✓ Rotation of 6m guide length (25 mm translation at casemate entry)

