ENGINEERING AND SAMPLE ENVIRONMENT OF SANS

Cremlin 2018
Petergof \| Sylvain Désert

MAY 15TH 2018

Cea PA20 $\quad 10^{-3}<Q_{M I N}<1 \AA^{-1}$

cea PA20-OVERVIEW

MONOCHROMATOR AND POLARIZATION CASEMATE

cea casEMATE

Concrete $\mathrm{d}=2.3$

Concrete d=3.9

cea CASEMATE - INSIDE VIEW

cea POLARIZER

- Free position
- Guide
- Polarizer (double V-cavity) with P ~ 99\%@4 (Swiss Neutronics)

cea collimator

16 m overall length
4 elements of 3.75 m in Al

2 supports

Vacuum 0.1 mbar
Attenuator wheel at entrance

Telescopic nose at exit
Inspection hatches
(Thales)

cea SANS MODE

Rectangular apertures with slits
 Up to $85(\mathrm{H}) \times 25(\mathrm{~W}) \mathrm{mm}^{2}$

6 collimation lengths : 19, 16, 12, 8, 4, 2 m

16 positions attenuator wheel in front of the collimator
"standard" collimation : $25 \times 25 \mathrm{~mm}^{2}$ entrance and $12.5 \times 12.5 \mathrm{~mm}^{2}$ exit
i.e. full use of beam width

cea GISANS MODE

For surface studies

1) Incident angle on the sample with a thin rectangular beam either vertical or horizontally (for liquids)

2) Beam axis centered and sample rotated (not for liquids)

cea VSANS MODE

Two sets of lenses inserted in the rear part of the collimator in front of the sample

Qmin (1/A)	$I(\AA)$	$L(m)$	Lens number
$4 \mathrm{E}-04$	9.2	19	19
$6 \mathrm{E}-04$	9.2	19	19
$8 \mathrm{E}-04$	6.5	19	37
$1 \mathrm{E}-03$	8.4	12	37

Target : $\mathrm{Q}_{\text {min }}=4.10^{-4} \AA^{-1}$
4 DoF for alignment

cea BEAM POLARIZATION

Polarization of the beam before the collimator

> must be kept up to the sample for $4+\AA$ A neutrons
> \Rightarrow Use of a guide field

With constraints:

- Distance between bottom and upper plate $=239 \mathrm{~mm}$ (to fit the guides)
- No magnetic parts inside the magnetic field
- No long space without magnetic guide field
- Removable telescopic plates (+300/-0 mm) to guide until the sample

cea GUIDE FIELD - PRINCIPLE

All the magnets are set along the same direction
Magnetic field is guided by the iron plates and loops homogeneously over the beam

cea GUIDE FIELD - SIMULATIONS

Only component is 35 G vertical (By)

cea GUIDE FIELD - SIMULATIONS

35 G vertical (By) and 2 G longitudinal (Bz)

cea GUIDE FIELD

- Dedicated tool required for plate handling

cea GUIDE TRANSLATION

Guide element Length $=1250 \mathrm{~mm}, \mathrm{~m}=1$
3 elements : $3750 \mathrm{~mm}, \sim 60 \mathrm{~kg}$ and 2 elements of 1250 mm
Translation length $=200 \mathrm{~mm}$
\rightarrow for Guide IN, Guide OUT or free space IN

cea GUIDE TRANSLATION

Unconstrained move: one motor, side rollers
Rail, motors and encoders located under the Fe plates

Motorization
Side rollers

cea BLINDS

Slim (50 mm) for insertion/removal without impact on the plates

Max opening 100 mm vertical and horizontal

4 independent blinds
to cover any part of the incoming guide and shift the beam axis for GISANS

B4C frame covering whole guide section but the beam (to isolate noise)

cea BLINDS - MOTORIZATION

4 motors : one by plate
End switch and anti-collision sensors
Slim absolute encoder (Hengstler, $\phi 40 \mathrm{~mm}$)
$\rightarrow 60 \mathrm{~mm}$ maximum gap between Fe plates

Motors and encoders outside the Fe plates \rightarrow No interaction with guide field

cea BLINDS - ABSORBERS

Composite assembly:

1 mm Cd:

- sharp machining
- high neutron capture

cea TELESCOPIC NOSE

Telescopic nose and independent telescopic guide field
$500 \mathrm{~mm}-0 /+300 \mathrm{~mm}$
Diaphragm holder at the edge
Sapphire window

Stainless edge welded bellow

cea COLLIMATOR SUPPORT

Only 2 supports
(2 temporary supports during assembly)
\rightarrow Offers easy alignment

cea 19 M COLLIMATION

Sample to detector distance $=19 \mathrm{~m}$ to get a $2 \times 19 \mathrm{~m}$ instrument

\rightarrow Incompatible with polarization mode

cea SAMPLE ENVIRONMENT ACCESS

Side access

Platform for top access \& storage

cea SAMPLE POSITIONING

6 DoF:
X 50 mm
Y 300 mm
Z 300 mm (manual)
$\theta_{x}+/-15^{\circ}$
$\theta_{\mathrm{Y}}+/-180^{\circ}$
$\theta_{z}+/-15^{\circ}$
$\theta_{Y}+/-180^{\circ}$ for EM (independant)
(Positechnics)

cea ELECTROMAGNET 2T

- 500 kg
- 60 A
- Perpendicular magnetic fields

cea ELECTROMAGNET

3470
$1.8 \mathrm{~T} @ 10 \mathrm{~mm}$
5 A

5403 FG
$1.6 \mathrm{~T} @ 10 \mathrm{~mm}$ 50 A
(GMW Associates)

- Perpendicular \& Longitudinal magnetic fields
- Crycooler insertion possible (loss of B max)

cea SUPRA COIL 10T - 4K

cea CRYOCOOLER

Easier to prepare than Cryostats:

- No filling
- No pre-cooling
- No required supply around
- Approx. 1 hour to get to 7 K

cea WATER COOLING

Standard:

- -10 to $80^{\circ} \mathrm{C}$
- Close-loop with probe
- Computer control \& record

cea 2D SAMPLE CHANGER

- 24 positions
- Temp controlled
- Optionnal vessel for He circulation

Cea MINIMIZING AIR GAP

cea DETECTOR TANK

- $\mathrm{V}=63 \mathrm{~m}^{3}$
- L=19 m
- Al 5754
- (SDMS)

cea VAcuUM

Automat (survey \& nose exchange)

Vacuum hoses

- 1 primary pump
- 1 secondary pump
(1 bar to 100 mbar) (100 mbar to 1 mbar)
$\rightarrow 1$ bar to 1 mbar in 2 hours
$\rightarrow 70 \mathrm{~dB}$ max

Cea ALIGNMENT

cea REAR DETECTOR CARRIAGE

Cea REAR DETECTOR (1.4-19 M)

- Multi Anode ${ }^{3} \mathrm{He}$ (ILL)
- $S=64 \times 64 \mathrm{~cm}^{2}$
- 128 rectangular channels of 5 mm

cea FRONT DETECTOR (1-9 M)

- 32 tubes (16 Hor. and 16 Ver.)
~ same plane (13 mm shift)
- Diam. $13 \mathrm{~mm}, 10$ bars ${ }^{3} \mathrm{He}$
- $\mathrm{S}=64 \times 20 \mathrm{~cm}^{2}$
- Tx and $\mathrm{Ty}=200 \mathrm{~mm}$

cea DETECTOR MOVE

cea 8 BEAM STOPS

\rightarrow Outside detector area
\rightarrow Accessible by BS holder

cea RELIABLE POSITIONING

Conical shape
Circular/elongated holes
\rightarrow Reliable positioning on support

Side tabs
 Indent machined on magnet
 \rightarrow Reliable positioning on magnet

cea TRANSPARENT TO NEUTRONS

\rightarrow Whole device hidden behind a $25 \times 25 \mathrm{~mm}^{2} \mathrm{BS}$
\rightarrow Hollow Al rods transparent to neutron

cea FLOOR LOAD (2T/M2)

cea ELECTRONICS

- Takes place
- Needs spare
- Needs to be well referenced
- Ethernet cards for long distances

cea CABLES!

cea FActory Acceptance TESTS

Portable electronic rack \& dedicated computer
Electronicians test all the axes prior to FAT
\rightarrow All axes ready for FAT
\rightarrow Plug'n Play when component is delivered

cea

 PROJECT MANAGEMENT

 PROJECT MANAGEMENT}

- Official team with steering comitee
- 1 lead Scientist + 1 lead Engineer
- Establish clear task allocation
- Compulsory periodic meeting
- Live planning

cea
 PLANNING

cea
 AKNOWLEDGEMENT

LLB Staff Design office	P. Permingeat P. Lavie
Polarization	S. Klimko
Motion control	F. Coneggo P. Lambert W. Josse G. Koskas
Call for tenders	S. Rodrigues
Technicians	M. Detrez S. Gautrot
Scientists	A. Helary
	G. Chaboussant J. Jestin A. Brûlet

TRIANGLE PHYSIQUE

NanoSciences
ILE - DE - FRANCE

cea ISNIE

International Society of Neutron

Instrument Engineers

cea DENIM VII

7th Design and Engineering of Neutron Instruments Meeting 2018

DENIM 2018

16-19 September 2018 Paul Scherrer Institut
Europe/Zurich timezone

Overview

Programme Overview Timetable

We are pleased to announce that the 7th Design and Engineering of Neutron Instruments meeting will be held at PSI, Switzerland, from September 16 to 19, 2018. This will prove to be an essential conference for all engineers and technicians interested in the project management, design, specification, fabrication, acceptance testing, operation maintenance and upgrades of neutron scattering instruments. We look forward to seeing you in the heart of Europe next autumn.

cea BACKUP SLIDES

cea MIRROR FOCUSING

KWS3 @ FRM2

PARELLI concept

Cea BEAMSTOP MOVIE

cea DETECTOR INSERTION

Cea no heat

Electromagnet WITH permanent magnet

No current $=$ magnetic field

Current $=$ No magnetic field

B4C 5 mm
Al plate 2 mm
Steel mounting
BS weight $40-150 \mathrm{~g}$

GUIDE FIELD - CALCULATION

Adiabatic rotation without loss of polarization:

$$
\omega_{L}>10 . \omega_{B}
$$

$$
\begin{array}{ll}
\omega_{L}=\gamma * B & \text { Larmor precession frequency } \\
\omega_{B}=v \frac{d \theta_{B}}{d y} & \text { Angular magnetic field rotation }
\end{array}
$$

$$
\begin{array}{cl}
\frac{d \theta_{B}}{d y}<2.65 B \lambda & \begin{array}{l}
\theta_{B}\left[{ }^{2}\right] \\
d y[c m] \\
\\
B[m T] \\
\lambda[\hat{A}]
\end{array} \\
\omega_{L}>22 . \omega_{B} @ \lambda=4 \AA & \\
\hline
\end{array}
$$

cea
 First Results / SANS

Spacing : 100 nm Pore size : 40 nm

First Results / GISANS

GISANS on nanostructured CoSiO_{2} / Si wafer

« domain » formation length scale : 125 nm

First Results / GISANS

Reflectometry on a Si wafer

$\lambda=7 \AA$
Collimation : 2 m
Diaphragmes: $1 \mathrm{~mm} * 25 \mathrm{~mm}$

First Results / GISANS

Reflectometry on on nanostructured CoSiO_{2} / Si wafer

presence of weak stripe domains in the superferromagnetic phase

$\lambda=7 \AA$
Collimation : 2 m
Diaphragmes: $1 \mathrm{~mm} * 25 \mathrm{~mm}$

cea VELOCITY SELECTOR

No vibration

cea sUPPORTS

Unconstrained move:

- Low friction coefficient with Teflon plate - Cylindrical / Square index footprints

cea FAST NEUTRONS

\checkmark Upward guide removal => fast neutrons passed
\checkmark Rotation of 6 m guide length (25 mm translation at casemate entry)

