Dilatometer for neutron diffraction in-situ investigations

Victoria Kononikhina, Andreas Stark, Peter Staron

Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Germany

14th May 2018: PNPI-TUM CREMLIN Workshop Peterhof, St. Petersburg

Helmholtz-Zentrum Geesthacht

Centre for Materials and Coastal Research

The development of suitable hot-forming processes is an important step towards the serial production .

Several **microstructure parameters change** during processing – *in-situ* investigations are necessary.

Currently existed sample enviroments are restricted by cooling with a furnace.

Solution: Use dilatometer in-situ in a neutron beam!

DIL 805A/D at High-energy XRD at HZG beamline at

DESY, Germany

- sample size: Ø 4–5 mm; / = 10 mm
- inductive heating (up to 1500 °C)

Wide heating range: up 4000°/s (for hollow samples)

Cooling rates up to quenching samples:

- quenching by blowing with gas (Ar, up to 100 °C·s⁻¹ "Oil" quenching)
- deformation (compression, tension) with 0.01–125 mm·s⁻¹ and max. 25 kN

Precise temperature control:

Resolution: $\Delta l = 0.05 \mu m$, $\Delta T = 0.05^{\circ}C$, $\Delta t = 0.0005s$

- photon energy: 100 keV (λ = 0.124 Å).
- beam cross section: < 1 mm × 1 mm.
- 2D-detectors with frame rates up to 10 Hz.

Stark et al., Adv. Eng. Mat. 13 (2011) 700–704. Stark et al., Metals 5 (2016) 2252–2265.

Helmholtz-Zentrum Geesthacht

Centre for Materials and Coastal Research

The dilatometer is an universal equipment for *insitu* thermo-mechanical experiments

Helmholtz-Zentrum Geesthacht

Centre for Materials and Coastal Research

Alloy systems studied since 2009:

- γ-TiAl based alloys
- Mg alloys
- Co-based superalloys
 Co-Re-based alloys
- NiTi shape memory alloys
- Steel (e.g. TRIP steel)
- Ti- or AI- based alloys

Intermetallics

Volume 50, July 2014, Pages 94–107

Mechanical and functional behavior of a Ni-rich Ni_{50.3}Ti_{29.7}Hf₂₀ high temperature shape memory alloy

O. Benafanª, ♣ · ☎, A. Garg^{b,} ª, R.D. Noebeª, G.S. Bigelowª, S.A. Padula IIª, D.J. Gaydosh^{c,} ª, N. Schell^d, J.H. Mabe^e, R. Vaidyanathan^f

Metals 2015, 5(4), 2252-2265; doi:10.3390/met5042252

Feature Paper Open Acces

Article

In Situ High-Energy X-ray Diffraction during Hot-Forming of a Multiphase TiAl Alloy

Andreas Stark ^{1,*} \square , Marcus Rackel ¹ \square , Aristide Tchouaha Tankoua ² \square , Michael Oehring ¹ \square , Norbert Schell ¹ \square , Lars Lottermoser ¹ \square , Andreas Schreyer ¹ \square and Florian Pyczak ¹ \square Initial Slide produced by P. Staron

γ -TiAl based alloys: lightweight structural materials

for high-temperature applications

- low density, ~4 g/cm³ (50% density of Ni-based superalloys)
- high specific strength up to 750 °C (~200 °C higher than Ti-based alloys)

TiAl low pressure turbine blades, last stages of the GEnx engine http://www.airbus.com

http://www.airbus.com

- the blade is a forged product
- establishment of "forging window" for new alloys required

Continuous Cooling Transformation (CCT)

Helmholtz-Zentrum Geesthacht

Centre for Materials and Coastal Research

Modeling of the Time Temperature Transformation (TTT) diagramms for TiAl

Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal Research

Hot-compression test

Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal Research

Uniaxial compression Sample Load direction (LD) Time Ti-42AI-8.5Nb (at. %) Heating 100°CIMIN Quenching >100°C/s Isothermal holding Temperature 1100°C Hot 1150°C compression 5-10⁻³ мм/seк 1300°C 3-10⁻² мм/seк ~ 30 min

Time

In-situ hight-energy X-ray diffraction during hot-forming of a multiphase TiAl alloy. A. Stark, M. Rackel at al. *Metals* 2015, 5

Texture changes during hot-forming process

Helmholtz-Zentrum Geesthacht

Centre for Materials and Coastal Research

Intensity distribution over azimuth angle as a function of time for the alpha 002 reflection during hot-forming process at different temperatures with deformation rate of 0.005 mm/s.

Texture evolution during hot compression

Slow (1.10⁻² s⁻¹) deformation @ 1230 °C of Ti-43Al-4Nb-1Mo-0.1B (in at.%)

Phase fractions: 89 vol.% α 11 vol.% β

Tensile test

Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal Research

Sheet steel / 900°C

<u>Round</u> tensile specimens / <u>flat</u> tensile specimens (sheet metal)

- Forming path: Pull: up to 9 mm Pull/ pressure ± 5 mm
- Maximum force: 10 kN
- Strain rates: 0.001 to 2.0 s-1

Possible experiments with dilatometer at high temperatures:

Centre for Materials and Coastal Research

Quenching

Compression

(TUM, HZG) A. Heinemann

(TUM, HZG) Weimin Gan

13

Neutron Dilatometer at FRM II

Difference between synchrotron and neutron dilatometers:

- Windows shape and material
- Coil shape
- Blowing gas mechanism
- Hight of the main frame with measurement units

Foto from Weimin Gan

Dilatometer at STRESS-SPEC

Helmholtz-Zentrum Geesthacht

Centre for Materials and Coastal Research

Neutron applications: Order–disorder transformations in TiAl

Helmholtz-Zentrum Geesthacht

Centre for Materials and Coastal Research

are determined

Neutron applications: TiAl alloys

Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal Research

γ (110) / Helmut Clemens, a₂ (11-20) **Neutrons** γ(201)/ **MU** Leoben a2 (11-22) y (112) Intensity γ (001) γ (221) γ (103) βο (100 SPODI@FRM II β₀ (210) $\lambda = 1.55 \text{ Å}$ β₀ (111) $\alpha_2(1$ γ (003 $\gamma(111)/$ a2 (0002) X-rays a2 (20-21) a (0002) a(10-11) Intensity ID15@ESRF y (220) / E = 87 keVγ (200) / a2 (20-20) a2 (22-40) a2 (20-23) γ (002) a (10-10) a(11-20) a(10-13)/ a₂ (20-22) βo **(1**10) y (001) (110)/ γ(201) / α(10-12) βο (211) (10-11)11-20) $\alpha_2(10-10)$ a2 (11-22) q [10¹⁰/m]

... only neutrons allow the study of order–disorder transformations in TiAl alloys, e.g. of the β/β_0 -phases. $b_{Ti} = -3,370 fm; b_{Al} = 3,449 fm$

L. Drössler, Diploma Thesis, MU Leoben (2008).

Neutron applications: Order–disorder transformations

Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal Research

STRESS-SPEC@MLZ

Temperature range: 1100 – 1450 °C

Heating ramp: 20 K/min

12h per sample:

8 h Measurements + 2 h heating and 2 h of cooling

Dilatometer:

 \rightarrow Faster and controlled heating and cooling for

full temperature range of interest

→ Dilatometer signal can detect sample melting

Neutron applications: Study of Austempered Ductile Iron (ADI)

Helmholtz-Zentrum Geesthacht

Centre for Materials and Coastal Research

Diffraction yields:

- phase fractions during tempering
- carbon content (aust. latt. param).
- morphology via peak width \geq

Dilatometer:

- \rightarrow Faster and controlled cooling to processing temperature possible → Dilatometer signal
- L. Meier, M. Hofmann, P. Saal, W. Volk, H. Hoffmann, Materials Characterization 85 (2013) 124–133.

19

1800

500

200 3

Dilatometer at SANS-1

Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal Research

3.5 Å – 30 Å

20m

20m

•Precipitates and segregation in alloys

•Defects in materials

Study of Sorption in monoliths with hierarchical pore structure

Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal Research

Oskar Paris, MU Leoben

*C. Balzer, R. Morak, M. Erko, C. Triantafillidis, N. Hüsing, G. Reichenauer, O. Paris, *Relationship between pore structure and sorption-induced deformation in hierarchical silica-based monoliths*, Z. Phys. Chem. (2015) 1–21; DOI 10.1515/zpch-2014-0542.

- The dilatometer is a unique equipment that allows performing insitu diffraction measurements under heat treatment and deformation conditions up to 1500°C
- The dilatometer enables not only fast and controlled heating, but also fast and controlled cooling or quenching!
- Thus, the use of a dilatometer is of high importance for improvement of industrial materials processing technologies

For materials of dilatometer use:

- Dr. Markus Rackel (HZG)
- Dr. Weimin Gan (HZG)
- **Dr. Michael Hofmann**

Petra Erdely, Dr. Helmut Clemens (MU Leoben)

Thank you for your attention!

Dilatometer – an equipment for *reproduction* **heat treatment conditions**

Helmholtz-Zentrum Geesthacht

Centre for Materials and Coastal Research

In-situ phase analysis for TTT or CCT diagramms

Continuous Cooling Transformation (CCT) Time Temperature Transformation (TTT)

Neutron applications: Order–disorder transformations

Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal Research

Binary TiAl phase diagramm. Julius C. Schuster and Martin Palm, Journal of Phase Equilibria and Diffusion, Vol. 27 No. 3 (2006).

Ordering and disordering and a Structure factor

Helmholtz-Zentrum Geesthacht

Centre for Materials and Coastal Research

Disordered Beta TiAl Ti and Al have random distribution at atom positions

Ordered Beta TiAl Positions of Ti and Al are determined

Every kind of atom has Simple Cubic Structure

Influence of the crystall symmetry to a diffracton pattern :

Forbiddened reflections of the BCC structure: **h+k+l odd** : **100; 111**; ... are allowed in Simple Cubic lattice and called **Superstructural**

Reflections, allowed for both crystal structures called Fundamental: 200; 101...

Ordering and disordering and a Structure factor

Helmholtz-Zentrum Geesthacht

Centre for Materials and Coastal Research

Disordered Beta TiAl Ti and Al have random distribution at atom positions

Ordered Beta TiAl Positions of Ti and Al are determined

Every kind of atom has Simple Cubic Structure

Influence of the crystall symmetry to a diffracton pattern :

Forbiddened reflections of the BCC structure: h+k+l odd : 100; 111; ... are allowed in Simple Cubic lattice and called Superstructural

Reflections, allowed for both crystal structures called Fundamental: 200; 101...

Neutron applications: Order-disorder

transformations

Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal Research

Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal Research

Michael Hofmann,

MLZ/TUM

Material used in automotive and other industries, low manufacturing costs

Ferrite

Graphite

etained

Diffraction yields:

- phase fractions during tempering
- carbon content (aust. latt. param).
- morphology via peak width

L. Meier, M. Hofmann, P. Saal, W. Volk, H. Hoffmann, Materials Characterization 85 (2013) 124–133. 30 Initial slide produced by P. Staron

Summary:

- Dilatometer is unique equipment allows to perform in-situ diffraction measurements under heat treatment and deformation conditions up to 1500°C
- Dilatometer combined with neutron instrument allows us determine microstructure and phase composition of the samples
- Currently there is the only dilatometer installed at a neutron facility
- Use of dilatometer is of high importance for improvement industrial materials processing technologies
- Dilatometer saves experimental time by faster heating and cooling. Precise processing temperature control is possible
- Dilatometer signal can detect sample melting

Welding temperature cycles

Friction stir welding of Al-Mg-Zn-Cu aircraft alloys

Development of precipitates during FSW?

High-energy SAXS experiment at HEMS (P07)

Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal Research

sample thickness: 4 mm X-ray beam small-angle detector sample medium-angle detector detector image sample 10 m 2 m slit environment photon energy: 70 keV $\lambda = 0.177 \text{ Å}$

Initial slide produced by P. Staron

Dilatometer:

apply temperature cycles as they occur in friction stir welding

- temperature profile corresponds to a feed rate of 5 mm/s
- $T_{max} \leftarrow \rightarrow$ distance from weld line

Torben Fischer, PhD Thesis, University of Hamburg (2014)

PhD work of Torben Fischer, HZG Numerical modelling

Centre for Materials and Coastal Research

 \rightarrow relation between welding speed and diffusion speed plays a crucial role!

Initial slide produced by P. Staron