

Petersburg Nuclear Physics Institute, Gatchina, Russia Saint Petersburg State University, Saint Petersburg, Russia

Design of the neutron guide system for the PIK reactor

<u>Peter Konik</u>, Konstantin Pavlov, Yurii Kireenko, Evgeny Moskvin, Vladislav Tarnavich, Sergey Grigoriev

15 May 2018

PIK reactor Main parameters

Main parameters

- Thermal power 100 MWt
- Fuel HEU
- Reflector D₂O
- Max flux (central channel) 5×10¹⁵ n/s/cm²
- Max flux (reflector) 1.3×10¹⁵ n/s/cm²
- 10 horizontal beamtubes
- 2 CNS and 1 HNS planned

Reactor starts in late 2018!

Cold neutron source

Cold neutron source Comparable to the ILL VCS

2nd CNS of HCS-type is planned

Peter Konik | PIK reactor neutron guide system

Design features

- Extensive use of modern optics
- One guide one instrument

Restrictions

- Only one beamtube!
- Beam requirements not frozen
- Narrow space in the bunker (25 m)
- ▶ 11.5⁰ between beamtube axis and guide hall axis
- Time and budget constraints

Konik, P. I., and E. V. Moskvin. "Ways of upgrading the neutron guide system of the PIK reactor." Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques 9.6 (2015): 1121-1125.

Instrumentation 14 cold instruments in the guide hall

I stage 2014–2018 (Modernization)

- ► 2× SANS
- 2× reflectometers
- SESANS
- ► DCD

PIK-GGBase collaboration

Il stage 2017–2021 (New instruments)

- Powder diffracometer
- ► 2× SANS
- 2× reflectometers (1 replacement)
- ► TAS
- Direct TOF spectrometer
- NSE spectrometer
- DEDM (fundamental physics line)

Additional thermal instruments from the reactor hall

General approach for the design

- 1. Define the beam requirements for each of the instruments and optics needed
 - Some are known from the previous experience
 - Some need additional study
- 2. Group the instruments according to the defined requirements
- 3. Fill the guide hall with instruments
- 4. Optimize horizontal shape of each guide
 - Curvature radii
 - Bender length
 - Focusing noses
- 5. Optimize vertical shape of each guide
- 6. Check the effect of the shutter optics (\sim 970 mm from the CNS)

Monochromatic instruments optics

Constant cross-section is preferable

Konik, P., S. Grigoriev, and E. Moskvin. "Neutron guide optimisation for monochromatic reflectometry." Journal of Neutron Research Preprint: 1-10.

Elliptic guides performance

Ellipse

Wavelength, AA Constrained ellipse

Nosed guides are preferable

0.2 4 6 8 10 12 14 16 18 20 22

Peter Konik | PIK reactor neutron guide system

Tilting the beam

Guide	Instruments	Main features
H0	DEDM (f.physics)	«general purpose»
H1	ColdTAS	straight, h-focusing nose
H2	PD, cm-Ref	c-curved
H3	h-Ref, v-Ref	v-nosed, 2 branches
H4	3×SANS, SESANS, NSE	5 branches
H5	TOF	vh-nosed

Hall plan Saving space for the future

High instrument density!

- put some instruments outside of the guide hall
- classify instruments into «lateral» and «straight» beamlines
- special cases of NSE and TOF

Loss factors

L	S	wavy	R_0	A_{v}	A_h	A _{rot}	shift	gap	all
10	30 imes 30	0.97	0.88	1.00	0.94	1.00	0.98	1.00	0.80
	30 imes 60	0.99	0.91	1.00	0.94	1.00	0.99	1.00	0.86
	30 imes 120	0.99	0.93	1.00	0.94	1.00	0.99	1.00	0.88
	30 imes 180	0.99	0.93	1.00	0.95	0.99	0.99	0.99	0.88
30	30 imes 30	0.91	0.70	1.00	0.83	1.00	0.96	1.01	0.54
	30 imes 60	0.93	0.76	1.00	0.83	0.99	0.96	1.00	0.59
	30 imes 120	0.95	0.80	1.01	0.83	0.99	0.97	1.00	0.64
	30 imes 180	0.95	0.81	1.01	0.83	0.99	0.98	1.00	0.66
60	30 imes 30	0.84	0.52	1.00	0.69	0.99	0.91	1.00	0.32
	30 imes 60	0.87	0.61	1.00	0.68	1.00	0.94	1.00	0.38
	30 imes 120	0.89	0.65	0.99	0.68	0.99	0.95	0.99	0.43
	30 imes 180	0.91	0.67	1.00	0.71	0.98	0.95	1.00	0.45
100	30 imes 30	0.77	0.37	1.00	0.53	0.99	0.86	1.00	0.17
	30 imes 60	0.81	0.45	0.99	0.53	0.98	0.89	0.99	0.22
	30 imes 120	0.84	0.51	0.99	0.55	0.97	0.91	0.99	0.25
	30 imes 180	0.85	0.54	0.99	0.55	0.96	0.92	0.99	0.27

- PIK reactor will start by the end of 2018
- The general approach to design guide system is presented
- The current system design is presented
- Acknowledgment to NSAC members

Thank you for attention!