

PLCs for neutron instrument control

May 15th, 2018 | Harald Kleines

Jülich Centre for Neutron Science

- Forschungszentrum Jülich
 - Multi-disciplinary research institute, about 5800 employees
 - Research reactor FRJ-2 was switched off in 2006

⇒Foundation of the JCNS in 2006

- Central Divisions: JCNS-1, JCNS-2, (JCNS-3) in Jülich
- Outstation at MLZ in Garching: 11 instruments at FRM-2
- Outstation at ILL in Grenoble: 3 instruments in cooperation with CEA
- Outstation at SNS in Oak Ridge: 1 instrument
- Future activities: ESS (3+ Instruments) + High Brilliance Source

Control System Architecture of the JCNS Instruments

 Jülich-Munich Standard: Common framework for neutron instrument control defined by JCNS and TUM

 Ca. 1995 first implementation at instruments in Jülich

 Historical evolution from TACO to TANGO

- Slow Control at JCNS:
 - Extremely standardized
 - Architecture
 - Products
 - Communication Mechanisms
 - ⇒ Reduction of efforts for development and maintenance, spare parts,.....

Systems according to the Jülich-

Münch Standard

Slow Control at JCNS Neutron Instruments

- Dominating task is Motion Control
 - Equipment: motor controllers, frequency converters, encoder interfaces,......
 - Motors at JCNS:
 - Predominantly 2-phase stepper motors, only few 3-phase from Berger-Lahr (now Schneider Electric)
 - (Almost) no DC motors
 - No BLDCs
 - A few asynchronous AC motors (3-phase, 400 V)
 - Increasing number of synchronous AC servo motors
 - Only a few piezo motors: mechanics + electronics from vendor
- Additional Slow Control Tasks:
 - Personal safety system: IEC61508 SIL3 and ISO 13849 PLe
 - Vaccum and cryogenic systems: vacuum gauges, pump controllers, digitial + analog IOs,....
 - Sample environment: PID controllers, digital + analog IOs,...

Historical evolution of Motion Control at JCNS

- Originally: in-house developments of stepper motor drivers and controllers, encoder interfaces or frequency converters
 - Approach at LLB and ILL
- Later: modular 19" board systems and other commercial products
 - Approach at ISIS, NIST,...
- Paradigm change (ca. 1995): Introduce industrial automation technology from manufacturing
 - Approach at PSI, HZG, ESS

Industrial Automation technology

- Components/Systems:
 - Programmable Logic Controllers (PLCs)
 - Fieldbus systems
 - Decentral IO systems

⇒ Common systems for motion, safety, vacuum,.....

- Motivation:
 - Long term availability
 - Price
 - Robustness/Stability
 - Wide product range

litglied der Helmholtz-Gemeinscl

Vendors in Automation

Beckhoff: ca. 600 Mio. \$

- Extreme market segmentation
- Situation in Germany
 - Siemens absolute dominant (>60% market share)
 - Numerous medium sized vendors, especially for decentralized IO systems: Wago, Möller, Phoenix Contact, Weidmüller, Helmholz, Beckhoff, B&R,.....
- All required products offered by Siemens (quality, price,...)
- Already a de-facto standard in Jülich
- ⇒ Decision for Siemens
 - Decision against high end systems
 Sinumerik und Simotion
 - ⇒ S7-300 + ET200S

glied der Helmholtz-Gemeins

Communication Architecture

Server Computers (only CPCI)

PLC gives homogeneous view on axes, independent of controller type, encoder,..

PROFIBUS DP, PROFINET IO

PLCs + Op. Panels

PROFIBUS DP, PROFINET, AS-Interface

ASi

ET200S ET200M ET200pro

Decentral IO Systems in Protection class ≥ IP65

- Without cabinet in the field
- ASi-Module (IFM: Digital I/Os, pneumatic valves)

- Siemens ET200pro
 - PROFIBUS und PROFINET
 - Supports FESTO valve manifolds
 - Failsafe IO supported

- Festo CPX
 - PROFIBUS und PROFINET
 - Integrated valve manifolds

Decentral IO Systems for cabinets

Siemens ET200S

- IF modules for PROFIBUS + PROFINET
- Digital + analog IOs
- Motor controllers, encoder modules,...
- Motor starters up to 5 kW

Siemens ET200M

- IF modules for PROFIBUS and PROFINET
- S7-300 peripheral modules

- Integration of other vendors
 - Straight forward on base of GSD files

Stepper motor controllers

Almost exclusively used

- -ET200S
- -204 kHz
- -Step/direction

Only a few axes (are being replaced)

FM357

- **-**S7-300
- -4 axes trajectory control (NC)
- -625 kHz oder Servo
- incremental + SSI encoders

Outdated!!

In Future

Phytron TM Step Drive

- -ET200S P
- -510 kHkz/
 - 256 microsteps
- -5A (peak) / 48V

Phytron 1STEP-Drive

-510 kHkz / 512 microsteps

-Integ. driver: 5A (peak) / 48V

-ET200S

TM PTO 4

- ET200MP
- 4 channel
- 1 MHz

lied der Helmholtz-Gemeins

JÜLICH FORSCHUNGSZENTRUM

External Stepper Motor Drivers

Phytron 2-phase drivers

CCD+

- -9A/70V
- -1/20 Microstep
- -Manual control
- -Display

MR8+

- -5A/48V
- -1/20(512)Microstep

Outdated!!

MSD/MSD2 +

- -17A (peak)
- -140/120 V
- -1/20 Microstep

MCD+

- -9A/70V
- -1/20(512) Microstep

glied der Helmholtz-Gemeinsch

Controllers for AC Motors

- ET200S
- Direct starter (also as soft starter) for 3 phase 400V
- Up to 5,5 KW

Sinamics S120

- Family of intelligent servo controllers
- Decentral (PROFINET + PROFIBUS)
- Distributed operation without PLC possible
- Dedicated engineering tool Startdrive integrated into TIA portal
- Many other optimized servo controller families available
- Easy integration of third party products via PROFIdrive standard

Encoder Readout

- Angle + linear-encoders from Heidenhain, Balluff, Renishaw, AMO,...
- Absolute, incremental (optical, inductive,....),
- Interfaces: SSI, EnDat (PB-Gateway), PROFIBUS, PROFINET, DRIVE-CliQ (only used for AC servo motors)
- ET200S modules 1SSI und 1Count (RS485 quadrature signals)
- Also a few resolvers (PROFIBUS Interface from AMCI) and potentiometers

tglied der Helmholtz-Gemeinsc

Controllers (CPUs)

Only Siemens products (very wide product range, common programming model)

High End: \$7-400

ET200pro CPU

SoftSPS: WinAC

S7-mEC (Windows PC)

Simatic MP

- JCNS: exclusively S7-300 (CPU 315-2 PN/DP) and ET200S CPU (IM 151-7 CPU)
 - Single processor
 - Modular and scalable
 - Powerful Communication ⇒ decentral architecture

Micro: ET200S CPU

Programming of Controllers

- Goal: all automation tasks shall be solved in the front-end and not in control system servers or application software
 - Separation between technology know how and "standard" SW development
 - Hardware specialties (like different motor controllers) are hidden
 - High complexity because of real time requirements and simultaneous handling of several devices and communication interfaces
- Development environment: Step7 / TIA Portal
 - Hardware configuration
 - Monitoring, debugging, SW loading
 - Programming:
 - KOP (ladder diagram) is not used at all
 - FUP (function plan) only used for safety applications
 - STL (statement list)
 - ST (structured text)
 - S7-Graph: graphical programming of sequencers (Petri-Nets)
 - Touchpanel: WinCC
 - Direct operation/visualisation of the PLC independent of control system computers
 - Internal PLC diagnostics

lied der Helmholtz-Gemeinscha

JÜLICH FORSCHLINGSZENTRIIM

Recent Activities

- New PLC-Familiy S7-1500
 - Successor of S7-300
 - Decentral Periphery: ET200MP
 - Max. 30 Modules (12 with PROFIBUS)
 - SW-compatible low end family: S7-1200
 - Compact PLCs for around 200€
- Improved development environment: TIA-Portal
 - Programming changes required
 - JCNS SW framework was adapted successfully
- Integrated motion functionality based on PLCopen
 - Standardized function block interface
 - Independent of specific motor/controller type
- New decentral periphery System ET200SP
 - Hot swap of modules
 - Up to 64 modules (32 with PROFIBUS)

Safety: Siemens Safety Integrated

- Special failsafe CPUs (F-CPUs; S7-400 provides even high availability)
- Standard PROFIBUS/PROFINET hardware extended by application layer protocol to implement PROFIsafe
- Special failsafe peripheral modules can be mixed with standard peripheral modules
- Failsafe Program can coexist with standard program on the same CPU
- Engineering: Add-on to Step7/TIA Portal
- Up to IEC61508 SIL3 and ISO 13849 PLe

Communication with the control system

- Originally in house development of an PROFIBUS controller as CPCI module
 - with Linux device driver and configuration SW
- Now PROFINET: Development of PC104+ carrier

PROFIBUS controller

- Mezzanine: Siemens CP1604
- Configuration automatically by PLC configuration
- Functionally similar to PROFIBUS
- ⇒ simply a new library under Linux and different function calls on the PLC side

PC104+ Carrier

PROFINET Controller CP1604

Application Protocol

- Abstract controller/axis modell (e.g for synchronized movement)
- Transactions for the execution of most commands
- Producer/Consumer model of PROFIBUS/PROFINET
- ⇒Fast communication by directly mapped areas (e.g. for positions)

Example 1: Small Angle Instrument KWS1

KWS1 Implementation

Example 2: Motion Subsystem of ANTARES

Example 3: TOF instrument DNS

DNS Implementation I

DNS Imlementation II

Examples of decentral cabinets

S7-1500 at the Spin Echo Instrument

Conclusions

- Successful concept for more than 20 years
 - Standardized software and hardware
 - Minor changes with S71500 and ET200SP
 - Arbitray mixing of PROFIBUS, PROFINET, S7-300, S7-1500, ET200S/SP/M/MP possible
- Decision for the de-facto industry standard:
 - Easy interfacing devices from other vendors
- ESS: S7-1500 for safety, vacuum, etc. but Beckhoff Ethercat modules for motion
 - Effort in working with new vendor required
 - First experiences show disadvantages regarding functionality, electro mechanical design, documentation, help system, diagnostics,.....