German Conference for Research with Synchrotron Radiation, Neutrons and Ion Beams at Large Facilities

Contribution ID: 173 Type: Poster

Low-temperature phase transitions in PrAlO3-SrTiO3 series

Monday 17 September 2018 17:00 (15 minutes)

Phase and structural behaviour of the continuous perovskite solid solution Pr_{1-x}Sr_xAl_{1x}Ti_xO₃ have been studied in the temperature range 20 -295 K by highresolution X-ray synchrotron powder diffraction. Superb characteristics of the beamline ID22@ESRF allows to detect either subtle spiting of the main perovskite maxima and/or appearance of weak superstructure reflections, thus proving diverse variants of perovskite structure existing in Pr_{1-x}Sr_xAl_{1x}Ti_xO₃ series at different compositions and temperatures. It was revealed that the samples with x = 0.1 and 0.2 undergo a sequence of structural phase transitions R-3c –Immb –I2/m, similar to those observed for the parent PrAlO₃ phase. These LT transitions in praseodymium aluminate are unique among all RAIO₃ perovskites and are considered to be caused by the electronic effects involving Pr³⁺ ions, e.g. a coupling between Pr³⁺ electronic states and phonons and/or cooperative Jahn-Teller effects. It was established that temperatures of both R-3c –Immb and $Immb-I2/m\ transitions\ in\ Pr_{1-x}Sr_xAl_{1-x}Ti_xO₃Al<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<sub>Ti<s$ series systematically decrease from 205 K and 151 K for PrAlO₃ to 170 K and 90 K for x = 0.2 sample. Quite different phase behaviour was observed in the SrTiO₃-rich part of the system. Simultaneous aliovalent substitution of Sr²⁺ and Ti⁴⁺ species by 10 % Pr³⁺ and Al³⁺ ions increases the temperature of a Pm3m –I4/mcm transition from 105 K in SrTiO₃ to~250~K~in~Pr_{0.1}Sr_{0.9}Al_{0.1}Ti_{0.9}O₃.

Authors: VASYLECHKO, Leonid (Lviv Polytechnic National University); Mr HREB, Vasyl (Lviv Polytechnic National University); Dr PROTS, Yurii (Max-Planck-Institut für Chemische Physik fester Stoffe); Dr CODURI, Mauro (ESRF - the European Synchrotron)

Presenter: SENYSHYN, Anatoliy

Session Classification: Poster session 1

Track Classification: P8 Functional materials and materials science