Warning: We observe an increase of emails from fake travel portals like . "travelhosting.co.uk". We never send links to such portals so be vigilant!

17–19 Sept 2018
Fakultät für Maschinenwesen der Technischen Universität München
Europe/Berlin timezone

Growth and characterization of Fe$_{3}$O$_{4}$/Nb:SrTiO$_{3}$ heterostructure

17 Sept 2018, 16:30
1h 30m
Fakultät für Maschinenwesen der Technischen Universität München

Fakultät für Maschinenwesen der Technischen Universität München

Boltzmannstraße 15 85748 Garching b. München
Poster P4 Magnetism and quantum phenomena Poster session 1

Speaker

Dr Anirban Sarkar (Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science JCNS and Peter Grünberg Institut PGI, JARA-FIT)

Description

Transition metal oxides are interesting materials to study the complex interaction between electron spin, charge, and orbital ordering. One such oxide is the cubic spinel ferrimagnetic magnetite (Fe$_{3}$O$_{4}$), exhibiting high Curie temperature ($\sim$860 K) and a characteristic Verwey transition at 120 K leading to an abrupt increase in its resistivity. The half-metallic ground state (100% spin polarization) with the magnetic moment of 4.05$\mu_{B}$/f.u. makes Fe$_{3}$O$_{4}$ a promising material for application in spintronics devices. However, for realization of such applications it is important to comprehend these properties in the form of thin film heterostructure on semiconducting substrates [1].

Here we study the morphology, electric, magnetic, magneto-electric coupling and magneto-transport properties of Fe$_{3}$O$_{4}$/Nb:SrTiO$_{3}$. Studies like, charge screening-control of the Verwey transition, interfacial capacitance, magnetic depth profile, and ferroelectric ordering are of special interest. The Fe$_{3}$O$_{4}$ films are grown in an oxide molecular beam epitaxy system. We use x-ray diffraction and reflectometry for the structural characterizations, and atomic force microscopy (AFM) for the morphology of thin film. Magnetic and transport properties of the heterostructure are studied using SQUID magnetometer and physical property measurement system, respectively. We use polarized neutron reflectrometry technique to study the depth profile of magnetization in the heterostructure.

[1] X. Wang, et. al., J. Mater. Sci. Technol. (in-press) (2018).

Primary author

Dr Anirban Sarkar (Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science JCNS and Peter Grünberg Institut PGI, JARA-FIT)

Co-author

Prof. Thomas Brückel (Forschungszentrum Jülich GmbH)

Presentation materials

There are no materials yet.