Warning: We observe an increase of emails from fake travel portals like . "travelhosting.co.uk". We never send links to such portals so be vigilant!

17–19 Sept 2018
Fakultät für Maschinenwesen der Technischen Universität München
Europe/Berlin timezone

Exchange coupling effects in hybrid Gr-4f RE systems

17 Sept 2018, 16:30
1h 30m
Fakultät für Maschinenwesen der Technischen Universität München

Fakultät für Maschinenwesen der Technischen Universität München

Boltzmannstraße 15 85748 Garching b. München
Poster P6 Nanomaterials and nanostructures Poster session 1

Speaker

Ms Leticia de Melo Costa (Alba Synchrotron and IMDEA Nanociencia)

Description

Hybrid Ferromagnetic/Graphene (FM/Gr) systems enclose remarkable technological opportunities by bridging spintronics with promised ultra-fast Gr-based electronics and photonics. These are also of fundamental relevance since Gr actively interacts with the neighboring materials determining a modification of the electronic and magnetic properties of the system. In particular, Graphene-spaced magnetic systems with antiferromagnets offer exciting opportunities for the investigation of exchange-coupling phenomena in spintronics.
We have recently shown that ultra–thin graphene/Co films grown on Ir(111) or Pt(111) templates exhibit robust perpendicular magnetic anisotropy (PMA) and antiferromagnetic exchange-coupling when Fe is deposited on top of Gr. These results gather a collection of magnetic properties well-suited for applications. However, one drawback in 3d-FM/Gr systems, is that the FM-Gr hybridization is so strong that impact Graphene´s electronic properties, for example, the presence of Dirac´s cone. Instead, the weak interaction between 4f-FM and Gr preserves Gr unique electronic structure and particularly Dirac´s cone.
Here, by resorting to X-ray absorption and magnetic dichroism (XAS-XMCD) measurements we investigate the magnetic configurations, the nature of the Gr mediated exchange coupling and the magnetic anisotropy in 4f-FM/Gr hybrid systems such as Eu, Dy or Ho as an extension of Gr- synthetic antiferromagnetic (SAF) systems.

Primary authors

Ms Leticia de Melo Costa (Alba Synchrotron and IMDEA Nanociencia) Dr Manuel Valvidares Dr Paolo Perna Dr Pierluigi Gargiani Dr Julio Camarero Dr Rodolfo Miranda

Presentation materials

There are no materials yet.