Warning: We observe an increase of emails from fake travel portals like . "travelhosting.co.uk". We never send links to such portals so be vigilant!

17–19 Sept 2018
Fakultät für Maschinenwesen der Technischen Universität München
Europe/Berlin timezone

Exploration of dynamic fluid regimes during steady-state multiphase flow in a sandstone with using synchrotron imaging

18 Sept 2018, 16:00
1h 30m
Fakultät für Maschinenwesen der Technischen Universität München

Fakultät für Maschinenwesen der Technischen Universität München

Boltzmannstraße 15 85748 Garching b. München
Poster P1 Instrumentation and methods Poster session 2

Speaker

Ms YING GAO (IMPERIAL COLLEGE LONDON)

Description

The Diamond Lightsource Pink Beam was used to image dynamic fluid flow in Bentheimer sandstone at steady state, at a resolution of 5.2 µm during the co-injection of oil and water together. We present a novel method that uses fast synchrotron tomography to examine flow mechanisms underground by observing oil and water distribution through time.
Bentheimer is a homogeneous sandstone with a pore size from 8 to 11 µm, whose connected porosity resides in the macro-porosity with very little micro-porosity. A non-wetting phase, decane, and a wetting phase, 15 wt% KI brine, were co-injected at equal flow rates into a micro-core 5 mm across. Both fluids were injected simultaneously into the core and were collected at the outlet with a back pressure regulator. Tomographic scans were taken successively with a 6.7 mm by 5.6 mm field of view. Total acquisition time was ~ 1 min per scan.
The total flow rate increased from 0.02 mL/min (Ca ~ 2.5×10-7) to 2 mL/min (Ca ~ 2.5×10-5) step by step. We found that when Ca is lower than 10-6, oil and water reside their own pore space even when there is a sudden increase in flow rate. However, when Ca is higher than 10-6, an increase rate will alter the fluid distribution. The higher the flow rate, the greater the fluid rearrangement. Eventually a steady-state is reached, but even here some pore-space configurations continue to fluctuate.

Primary author

Ms YING GAO (IMPERIAL COLLEGE LONDON)

Co-authors

Dr QINGYANG LIN (IMPERIAL COLLEGE LONDON) Mr YOUSEF AL-KHULAIFI (IMPERIAL COLLEGE LONDON) Dr HANNAH MENKE (IMPERIAL COLLEGE LONDON) Dr KAMALJIT SINGH (IMPERIAL COLLEGE LONDON) Prof. MARTIN BLUNT (IMPERIAL COLLEGE LONDON) Dr BRANKO BIJELJIC (IMPERIAL COLLEGE LONDON)

Presentation materials

There are no materials yet.