Warning: We observe an increase of emails from fake travel portals like . "travelhosting.co.uk". We never send links to such portals so be vigilant!

17–19 Sept 2018
Fakultät für Maschinenwesen der Technischen Universität München
Europe/Berlin timezone

Element-specific atomic-scale structure and anion positions of Cu2(Zn,Fe)SnS4 kesterite-stannite alloys

18 Sept 2018, 16:00
1h 30m
Fakultät für Maschinenwesen der Technischen Universität München

Fakultät für Maschinenwesen der Technischen Universität München

Boltzmannstraße 15 85748 Garching b. München
Poster P8 Functional materials and materials science Poster session 2

Speaker

Claudia S. Schnohr (Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena)

Description

Substituting Zn by Fe in Cu2ZnSnS4 changes the band gap of the material from about 1.5 eV to about 1.8 eV [Shibuya et al., Appl. Phys. Lett. 104, 021912, 2014]. Interestingly, the transition from Cu2ZnSnS4 to Cu2FeSnS4 is accompanied by a change of the crystal structure from kesterite type to stannite type via a complex rearrangement of the cation species [Schorr et al., Eur. J. Mineral. 19, 65, 2007]. Furthermore, the S anions in the mixed system are surrounded by different local cation configurations. In order to determine the element-specific bond lengths of the alloy material, Cu2(Zn,Fe)SnS4 powder samples with 0 ≤ Fe/(Zn+Fe) ≤ 1 were investigated with extended X-ray absorption fine structure spectroscopy. All bond lengths are nearly independent of the alloy composition, yet they differ substantially for the different elements. While the Cu-S and Fe-S bond lengths are identical, the Zn-S and Sn-S bond lengths are larger by about 0.03 and 0.12 Å, respectively. Based on these experimental results, the S anion position is modelled for different cation configurations and is found to be clearly different in the Zn or the Fe containing environment. This leads to an intrinsic structural inhomogeneity of the alloys on a subnanometer scale. The impact of the S anion displacement on the band gap energy was determined by density functional theory based calculations revealing a strong correlation between local atomic arrangements and electronic properties of Cu2(Zn,Fe)SnS4.

Primary authors

Cora Preiß (Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena) Konrad Ritter (Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena) Stefanie Eckner (Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena) Philipp Schöppe (Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena) Thomas Bischoff (Institut für Festkörpertheorie und -optik, Friedrich-Schiller-Universität Jena) Silvana Botti (Institut für Festkörpertheorie und -optik, Friedrich-Schiller-Universität Jena) Susan Schorr (Helmholtz-Zentrum Berlin für Materialien und Energie & Institut für Geologische Wissenschaften, Freie Universität Berlin) Claudia S. Schnohr (Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena)

Presentation materials

There are no materials yet.