Warning: We observe an increase of emails from fake travel portals like . "travelhosting.co.uk". We never send links to such portals so be vigilant!

10–11 Dec 2019
Marriott
Europe/Berlin timezone

Multi-scale phase quantification of strain-induced martensite in Austempered Ductile Iron (ADI) using different neutron diffraction techniques

11 Dec 2019, 13:30
3h
Marriott Conference room - Munich (Marriott)

Marriott Conference room - Munich

Marriott

Berliner Str. 93 80805 München Germany
300
Show room on map
Board: 50
Poster Materials Science Poster session

Speaker

Xiaohu Li

Description

Austempered ductile iron (ADI) is an attractive material with excellent mechanical properties, like high strength, good ductility, wear resistance and fatigue strength. Its mechanical properties are largely determined by the ausferritic microstructure which contains retained high carbon enriched austenite. The retained austenite will become unstable under plastic deformation and will transform to strain-induced martensite. Because of plastic deformation and similar crystal structure of martensite and ferrite, the quantitative phase analysis of the strain-induced martensite in ADI using diffraction techniques has two difficulties, i.e., texture formation and peaks overlapping. These difficulties will influence the accuracy of quantitative phase analysis. By means of different neutron diffraction techniques and methods, like standard Rietveld method using whole diffraction pattern (SPODI + STRESS-SPEC) including the texture effect, texture method from the measured pole figure intensity (STRESS-SPEC) and Bragg edge neutron transmission method (Antares), the difficulties in phase quantification were will be presented in current contribution. Furthermore, the advantages, disadvantages and accuracy of each method will be discussed and summarized.

Primary authors

Xiaohu Li Dr Soria Sergio (Heinz Maier-Leibnitz Zentrum (MLZ) FRM II) Weimin Gan (Helmholtz-Zentrum Geesthacht) Michael Hofmann Michael Schulz Markus Hoelzel

Presentation materials

There are no materials yet.