Warning: We observe an increase of emails from fake travel portals like . "travelhosting.co.uk". We never send links to such portals so be vigilant!

13–17 Sept 2015
Freising
Europe/Berlin timezone

Spectroscopical characterisation of high surface area carbons through a multitechnique approach

16 Sept 2015, 16:55
25m
Freising

Freising

Talk DyProSo2015 Main track Two-dimensional systems

Speaker

Andrea Piovano (Institut Laue Langevin, Grenoble)

Description

Andrea Piovano1, Andrea. Lazzarini2, Carlo Lamberti2, Giovanni Agostini3, Giuseppe Leofanti4, Riccardo Pellegrini5, Elena Groppo2 1 Institut Laue-Langevin (ILL), BP 156 X, F-38042 Grenoble Cedex, France 2 Department of Chemistry,University of Turin, Via Giuria 7, I-10125, Turin, Italy 3 European Synchrotron Radiation Facility (ESRF) 6 Rue Jules Horowitz, BP 220 38043 Grenoble Cedex, France 4 Consultant,Via Firenze 43, 20010Canegrate,Milano, Italy 5 Chimet SpA - Catalyst Division, Via di Pescaiola 74, ViciomaggioArezzo, I-52041 Italy High surface area carbons are industrially relevant materials whose properties depend on morphology, texture and surface features. The detailed characterization of functional group on the surface of this class of materials is a fundamental step for understanding their potential in a variety of applications. Unfortunately IR, the widely used laboratory spectroscopy method, is difficult to be applied on carbons due to the intrinsic strong absorption. We present here an multitechnique approach, based on the synergic combination of three vibrational spectroscopies: i) FT-IR diffuse reflectance spectroscopy (DRIFT), that, limiting the strong absorption of the transmitted light is effective in evidencing vibrations with change in the dipole; ii) back-scattering Raman spectroscopy, which is sensitive mostly to carbon bulk vibrational modes; iii) Inelastic Neutron Scattering (INS) that, eliminates the problem of radiation interaction and is sensitive to vibrations involving hydrogen including species, highly aboundant on carbons surface. The three technique are applied to two classes of activated carbons, subjected to specific chemical treatments. The whole set of experimental data, interpreted with the help of DFT calculations, allow us to point out their structural and surface properties, and to clarify some controversial information present in the specialized literature, where conclusions are done on the basis of the data obtained by a single technique.

Primary author

Andrea Piovano (Institut Laue Langevin, Grenoble)

Co-authors

Andrea Lazzarini (Department of Chemistry, University of Turin) Carlo Lamberti (Department of Chemistry, University of Turin) Elena Croppo (Department of Chemistry, University of Turin) Giovanni Agostini (European Synchroton Radiation Facility, Grenoble) Giuseppe Leofanti (Consultant) Riccardo Pellegrini (Chimet SpA, Viciomaggio Arezzo)

Presentation materials

There are no materials yet.