Conveners
Plenary Talk: H. Ehrenberg
- Anatoliy Senyshyn
Plenary Talk: M. Reischl
- Martin Meven (RWTH Aachen University, Institute of Crystallography - Outstation at MLZ)
Plenary Talk: N. Shustova
- Alexander Pöthig
Plenary Talk: A. Kovalevsky
- Tobias Schrader
Plenary Talk: T. Kimura
- Sohyun Park (LMU)
Plenary Talk: L. Granasy
- Wolfgang Schmahl (LMU Munich)
Plenary Talk: Bruno Canard
- Rolf Hilgenfeld
The structural behavior of battery materials during cycling and fatigue must be studied under real operation conditions. This contribution reviews the capabilities and challenges of in operando measurements using X-rays, synchrotron or neutron radiation with a focus on diffraction and spectroscopy. Selected examples are discusses for Li-ion batteries and for electrochemical energy storage...
Understanding how the CoV replication/transcription complex (RTC) works is central to design antiviral drug therapies as well as to the understanding of the emergence of variants. The SARS-CoV2 RTC is blatantly more 'active' than any other viral RdRp known. It possesses both unusually high nucleotide incorporation rates and high-error rates allowing facile insertion of mispaired nucleotides...
The development of novel materials with enhanced performance is a continuous process mainly driven by everyday demands. Optoelectronics is an excellent example of a field where constantly growing societal demands in energy consumption have forced material evolution to speed up. Metal-organic frameworks (MOFs), crystalline porous materials consisting of organic and inorganic building blocks,...
We show how to design an automated phase-analysis model based on a Convolutional Neural Networks (CNN). A framework for the efficient generation of simulated diffraction scans is developed, since real measured and labeled scans are hardly available. Using this synthetic database, a CNN is parameterized, trained and compared against the manual analysis. As a supportive approach, a denoising...
SARS-CoV-2 main protease (Mpro) is an important target for small-molecule COVID-19 antivirals. We use neutrons to determine protonation states of ionizable residues in Mpro informing computer-assisted and structure-based design. Several neutron crystal structures were determined, revealing protonation state modulation upon inhibitor binding. This information is used to design novel inhibitors...
Orientation-field-based phase-field models developed in the past decade will be presented, which incorporate homogeneous and heterogeneous nucleation of growth centers, and several mechanisms for the formation of new grains at the perimeter of growing crystals termed "growth front nucleation". This approach enables the modeling of complex polycrystalline structures. Microscopic aspects of...
We discuss symmetry-dependent magnetic, electric, and optical phenomena characteristic of materials with unconventional ferroic orders such as ferro-toroidal, ferro-axial, and ferro-quadrupole orders. The phenomena include magnetoelectric effect, nonreciprocal directional dichroism, and electrogyration. Furthermore, we show ways to spatially visualize domain structures in such unconventional...